Skip to main content
Top

2024 | OriginalPaper | Chapter

Road Accidents Forecasting: An Uncertainty Quantification Model for Pre-disaster Management in Moroccan Context

Authors : Hajar Raillani, Lamia Hammadi, Abdessamad El Ballouti, Vlad Stefan Barbu, Babacar Mbaye Ndiaye, Eduardo Souza de Cursi

Published in: Proceedings of the 6th International Symposium on Uncertainty Quantification and Stochastic Modelling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the critical area of road accident forecasting in Morocco, employing advanced uncertainty quantification models to enhance pre-disaster management. By analyzing historical road accident data, the study identifies significant trends and seasonal patterns, revealing a high frequency of accidents and injuries, particularly during the summer months. The authors utilize the Collocation method to develop accurate cumulative distribution functions (CDFs) for accidents, deaths, and injuries, enabling the calculation of probabilities for different human impact classes. This approach offers valuable insights for decision-makers, aiding in the development of targeted interventions to improve road safety and mitigate the impact of accidents. The chapter also highlights the importance of considering uncertainty in disaster modeling, providing a robust framework for predicting and managing road accidents effectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
1.
go back to reference Birkmann, J., et al.: Framing vulnerability, risk and societal responses: the move framework. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 67(2), 193–211 (2013) Birkmann, J., et al.: Framing vulnerability, risk and societal responses: the move framework. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 67(2), 193–211 (2013)
3.
go back to reference Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 38(3), 209–272 (2002)CrossRef Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 38(3), 209–272 (2002)CrossRef
4.
go back to reference Saltelli, A., Chan, K., Scott, E.M.: Sensitivity analysis. Wiley, Hoboken (2004)MATH Saltelli, A., Chan, K., Scott, E.M.: Sensitivity analysis. Wiley, Hoboken (2004)MATH
5.
go back to reference Smith, R.C.: Uncertainty quantification: theory, implementation, and applications, pp. XVIII + 382. SIAM (2013). ISBN: 978–1–611973–21–1 Smith, R.C.: Uncertainty quantification: theory, implementation, and applications, pp. XVIII + 382. SIAM (2013). ISBN: 978–1–611973–21–1
11.
go back to reference de Cursi, E.S., Sampaio, R.: Uncertainty Quantification and Stochastic Modeling with Matlab. Numerical Methods in Engineering. ISTE Press, London (2015) de Cursi, E.S., Sampaio, R.: Uncertainty Quantification and Stochastic Modeling with Matlab. Numerical Methods in Engineering. ISTE Press, London (2015)
14.
go back to reference National Highway Traffic Safety Administration. Traffic safety facts: 2017 data. National Highway Traffic Safety Administration, Washington, DC (2017) National Highway Traffic Safety Administration. Traffic safety facts: 2017 data. National Highway Traffic Safety Administration, Washington, DC (2017)
15.
go back to reference Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd ed. Springer, New York (2002). in Springer texts in statistics Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd ed. Springer, New York (2002). in Springer texts in statistics
19.
go back to reference Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)MATH Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)MATH
20.
go back to reference Chatfield, C.: The Analysis of Time Series: An Introduction with R. CRC Press, Boca Raton (2019)CrossRefMATH Chatfield, C.: The Analysis of Time Series: An Introduction with R. CRC Press, Boca Raton (2019)CrossRefMATH
22.
go back to reference Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)CrossRef Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)CrossRef
23.
go back to reference OCDE 2018, CONNAITRE ET EVALUER LES RISQUES DE CATASTROPHES NATURELLES AU MAROC, Royaume du Maroc ministère de l’Intérieur, Direction du développement et de la coopération DDC (2018) OCDE 2018, CONNAITRE ET EVALUER LES RISQUES DE CATASTROPHES NATURELLES AU MAROC, Royaume du Maroc ministère de l’Intérieur, Direction du développement et de la coopération DDC (2018)
24.
go back to reference Raillani, H., Hammadi, L., Samed, M.M.A., Ballouti, A.E., Barbu, V.S., Cursi, E.S.D.: Disaster assessment in humanitarian relief supply chain: application to the Moroccan context. In: 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC), pp. 1–6 (2022). https://doi.org/10.1109/ISIVC54825.2022.9800727 Raillani, H., Hammadi, L., Samed, M.M.A., Ballouti, A.E., Barbu, V.S., Cursi, E.S.D.: Disaster assessment in humanitarian relief supply chain: application to the Moroccan context. In: 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC), pp. 1–6 (2022). https://​doi.​org/​10.​1109/​ISIVC54825.​2022.​9800727
Metadata
Title
Road Accidents Forecasting: An Uncertainty Quantification Model for Pre-disaster Management in Moroccan Context
Authors
Hajar Raillani
Lamia Hammadi
Abdessamad El Ballouti
Vlad Stefan Barbu
Babacar Mbaye Ndiaye
Eduardo Souza de Cursi
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-47036-3_20

Premium Partners