Skip to main content
Top

2010 | OriginalPaper | Chapter

2. Robot Competence Development by Constructive Learning

Authors : Q. Meng, M. H. Lee, C. J. Hinde

Published in: Advances in Machine Learning and Data Analysis

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bousquet, O, Balakrishnan, K., and Honavar, V (1998). Is the hippocampus a Kalman filter? In Pacific Symposium on Biocomputing, pages 655–666, Hawaii. Bousquet, O, Balakrishnan, K., and Honavar, V (1998). Is the hippocampus a Kalman filter? In Pacific Symposium on Biocomputing, pages 655–666, Hawaii.
2.
go back to reference Hihara, S., Notoya, T., Tanaka, M., Ichinose, S., Ojima, H., Obayashi, S., Fujii, N., and Iriki, A. (2006). Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia, 44(13):2636–2646.CrossRef Hihara, S., Notoya, T., Tanaka, M., Ichinose, S., Ojima, H., Obayashi, S., Fujii, N., and Iriki, A. (2006). Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia, 44(13):2636–2646.CrossRef
3.
go back to reference Hihara, S., Obayashi, S., Tanaka, M., and Iriki, A. (2003). Rapid learning of sequential tool use by macaque monkeys. Physiology and Behavior, 78:427–434.CrossRef Hihara, S., Obayashi, S., Tanaka, M., and Iriki, A. (2003). Rapid learning of sequential tool use by macaque monkeys. Physiology and Behavior, 78:427–434.CrossRef
4.
go back to reference Huys, Quentin JM, Zemel, Richard S, Natarajan, Rama, and Dayan, Peter (2007). Fast population coding. Neural Computation, 19(2):404–441.MATHCrossRefMathSciNet Huys, Quentin JM, Zemel, Richard S, Natarajan, Rama, and Dayan, Peter (2007). Fast population coding. Neural Computation, 19(2):404–441.MATHCrossRefMathSciNet
5.
go back to reference Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Puetz, B., Yoshioka, T., and Kawato, M. (2000). Human cerebellar activity reflecting an acquired internal model of a novel tool. Nature, 403:192–195.CrossRef Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Puetz, B., Yoshioka, T., and Kawato, M. (2000). Human cerebellar activity reflecting an acquired internal model of a novel tool. Nature, 403:192–195.CrossRef
6.
go back to reference Johnson-Frey, Scott H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2):71–78.CrossRef Johnson-Frey, Scott H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2):71–78.CrossRef
7.
go back to reference Lee, M.H., Meng, Q., and Chao, F. (2007). Developmental learning for autonomous robots. Robotics and Autonomous Systems, 55(9):750–759.CrossRef Lee, M.H., Meng, Q., and Chao, F. (2007). Developmental learning for autonomous robots. Robotics and Autonomous Systems, 55(9):750–759.CrossRef
8.
go back to reference Lu, Yingwei, Sundararajan, N., and Saratchandran, P. (1998). Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on neural networks, 9(2):308–318.CrossRef Lu, Yingwei, Sundararajan, N., and Saratchandran, P. (1998). Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on neural networks, 9(2):308–318.CrossRef
9.
go back to reference Maguire, Eleanor A., Gadian, David G., Johnsrude, Ingrid S., Goodd, Catriona D., Ashburner, John, Frackowiak, Richard S. J., and Frith, Christopher D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. PNAS, 97(8):4398–4403.CrossRef Maguire, Eleanor A., Gadian, David G., Johnsrude, Ingrid S., Goodd, Catriona D., Ashburner, John, Frackowiak, Richard S. J., and Frith, Christopher D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. PNAS, 97(8):4398–4403.CrossRef
10.
go back to reference Maravita, A. and Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Science, 8(2):79–86.CrossRef Maravita, A. and Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Science, 8(2):79–86.CrossRef
11.
go back to reference O’Keefe, J. (1989). Computations the hippocampus might perform. In Nadel, L., Cooper, L.A., Culicover, P., and Harnish, R.M., editors, Neural connections, mental computation. MIT Press, Cambridge, MA. O’Keefe, J. (1989). Computations the hippocampus might perform. In Nadel, L., Cooper, L.A., Culicover, P., and Harnish, R.M., editors, Neural connections, mental computation. MIT Press, Cambridge, MA.
12.
go back to reference Piaget, Jean (1952). The Origins of Intelligence in Children. Norton, New York, NY.CrossRef Piaget, Jean (1952). The Origins of Intelligence in Children. Norton, New York, NY.CrossRef
13.
go back to reference Poggio, Tomaso (1990). A theory of how the brain might work. MIT AI. memo No. 1253. Poggio, Tomaso (1990). A theory of how the brain might work. MIT AI. memo No. 1253.
14.
go back to reference Poggio, Tomaso and Girosi, Federico (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481–1497.CrossRef Poggio, Tomaso and Girosi, Federico (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9):1481–1497.CrossRef
15.
go back to reference Pouget, A. and Snyder, L.H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience supplement, 3:1192–1198.CrossRef Pouget, A. and Snyder, L.H. (2000). Computational approaches to sensorimotor transformations. Nature Neuroscience supplement, 3:1192–1198.CrossRef
16.
go back to reference Quartz, S.R. and Sejnowski, T.J. (1997). The neural basis of cognitive development: A constructivist manifesto. Brain and Behavioral Sciences, 20:537–596. Quartz, S.R. and Sejnowski, T.J. (1997). The neural basis of cognitive development: A constructivist manifesto. Brain and Behavioral Sciences, 20:537–596.
17.
go back to reference Rao, R. and Ballard, D. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9(4):721–763.CrossRef Rao, R. and Ballard, D. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation, 9(4):721–763.CrossRef
18.
go back to reference Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex. Nature Neuroscience, 2(1):79–87.CrossRef Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex. Nature Neuroscience, 2(1):79–87.CrossRef
19.
go back to reference Shultz, T.R (2006). Constructive learning in the modeling of psychological development. In Munakata, Y. and Johnson, M.H., editors, Processes of change in brain and cognitive development: Attention and performance XXI, pages 61–86. Oxford: Oxford University Press. Shultz, T.R (2006). Constructive learning in the modeling of psychological development. In Munakata, Y. and Johnson, M.H., editors, Processes of change in brain and cognitive development: Attention and performance XXI, pages 61–86. Oxford: Oxford University Press.
20.
go back to reference Shultz, T.R., Mysore, S.P., and Quartz, S. R. (2007). Why let networks grow. In Mareschal, D., Sirois, S., Westermann, G., and Johnson, M.H., editors, Neuroconstructivism: Perspectives and prospects, volume 2, chapter 4, pages 65–98. Oxford: Oxford University Press. Shultz, T.R., Mysore, S.P., and Quartz, S. R. (2007). Why let networks grow. In Mareschal, D., Sirois, S., Westermann, G., and Johnson, M.H., editors, Neuroconstructivism: Perspectives and prospects, volume 2, chapter 4, pages 65–98. Oxford: Oxford University Press.
21.
go back to reference Szirtes, Gábor, Póczos, Barnabás, and Lőrincz, András (2005). Neural Kalman filter. Neurocomputing, 65–66:349–355. Szirtes, Gábor, Póczos, Barnabás, and Lőrincz, András (2005). Neural Kalman filter. Neurocomputing, 65–66:349–355.
22.
go back to reference Todorov, E. and Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11):1226–1235.CrossRef Todorov, E. and Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11):1226–1235.CrossRef
23.
go back to reference Weng, Juyang, McClelland, James, Pentland, Alex, Sporns, Olaf, Stockman, Ida, Sur, Mriganka, and Thelen, Esther (2001). Autonomous mental development by robots and animals. Science, 291(5504):599–600.CrossRef Weng, Juyang, McClelland, James, Pentland, Alex, Sporns, Olaf, Stockman, Ida, Sur, Mriganka, and Thelen, Esther (2001). Autonomous mental development by robots and animals. Science, 291(5504):599–600.CrossRef
24.
go back to reference Westermann, G. and Mareschal, D. (2004). From parts to wholes: Mechanisms of development in infant visual object processing. Infancy, 5(2):131–151.CrossRef Westermann, G. and Mareschal, D. (2004). From parts to wholes: Mechanisms of development in infant visual object processing. Infancy, 5(2):131–151.CrossRef
Metadata
Title
Robot Competence Development by Constructive Learning
Authors
Q. Meng
M. H. Lee
C. J. Hinde
Copyright Year
2010
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3177-8_2

Premium Partner