Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 11-12/2020

28-01-2020 | ORIGINAL ARTICLE

Robotic grasping and alignment for small size components assembly based on visual servoing

Authors: Yanqin Ma, Xilong Liu, Juan Zhang, De Xu, Dapeng Zhang, Wenrong Wu

Published in: The International Journal of Advanced Manufacturing Technology | Issue 11-12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A robotic assembly system for small components precision assembly is designed, which mainly comprises an industrial robot, three cameras, and a force sensor. The industrial robot is employed to conduct two classic assembly subtasks, i.e., grasping and pose alignment. An automatic grasping method with monocular vision guidance is proposed. The grasping strategy consists of three stages, i.e., aligning, approaching, and grasping, and picks up components with high efficiency. Moreover, a coordinated pose alignment strategy with two eye-to-hand microscopic cameras is developed. It can realize pose alignment efficiently and accurately. Besides, based on differential movement principle, the position offset due to the end-effector’s orientation adjustment is calculated and compensated, which avoids the grasped component out of the microscopic cameras’ field of view. Finally, a series of grasping and pose alignment experiments are conducted on designed robotic precision assembly system to verify the effectiveness of the proposed grasping and pose alignment methods. The grasping success rate is up to 100% with 30 times experiments, the orientation alignment error is less than 0.05, and the position alignment error is less than 26 μ m.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang J, Xu D, Zhang Z, Zhang W (2013) Position/force hybrid control system for high precision alignment of small gripper to ring object. Int J Autom Comput 10(4):360–367MathSciNetCrossRef Zhang J, Xu D, Zhang Z, Zhang W (2013) Position/force hybrid control system for high precision alignment of small gripper to ring object. Int J Autom Comput 10(4):360–367MathSciNetCrossRef
2.
go back to reference Chen H, Wang J, Zhang G, Fuhlbrigge T, Kock S (2009) High-precision assembly automation based on robot compliance. Int J Adv Manuf Technol 45:999–1006CrossRef Chen H, Wang J, Zhang G, Fuhlbrigge T, Kock S (2009) High-precision assembly automation based on robot compliance. Int J Adv Manuf Technol 45:999–1006CrossRef
3.
go back to reference Zhakypov Z, Uzunovic T, Nergiz AO, Baran EA, Golubovic E, Sabanovic A (2017) Modular and reconfigurable desktop microfactory for high precision manufacturing. Int J Adv Manuf Technol 90:3749–3759CrossRef Zhakypov Z, Uzunovic T, Nergiz AO, Baran EA, Golubovic E, Sabanovic A (2017) Modular and reconfigurable desktop microfactory for high precision manufacturing. Int J Adv Manuf Technol 90:3749–3759CrossRef
4.
go back to reference Faccio M, Bottin M, Rosati G (2019) Collaborative and traditional robotic assembly: a comparison model. Int J Adv Manuf Technol 102:1355–1372CrossRef Faccio M, Bottin M, Rosati G (2019) Collaborative and traditional robotic assembly: a comparison model. Int J Adv Manuf Technol 102:1355–1372CrossRef
5.
go back to reference Wason JD, Wen JT, Gorman JJ, Dagalakis NG (2012) Automated multiprobe microassembly using vision feedback. IEEE Trans Robot 28(5):1090–1103CrossRef Wason JD, Wen JT, Gorman JJ, Dagalakis NG (2012) Automated multiprobe microassembly using vision feedback. IEEE Trans Robot 28(5):1090–1103CrossRef
6.
go back to reference Ferreira A, Cassier C, Hirai S (2004) Automatic microassembly system assisted by vision servoing and virtual reality. IEEE Trans Mechatron 9(2):321–333CrossRef Ferreira A, Cassier C, Hirai S (2004) Automatic microassembly system assisted by vision servoing and virtual reality. IEEE Trans Mechatron 9(2):321–333CrossRef
7.
go back to reference Liu S, Xu D, Zhang D, Zhang Z (2016) High precision automatic assembly based on microscopic vision and force information. IEEE Trans Autom Sci Eng 13(1):382–393CrossRef Liu S, Xu D, Zhang D, Zhang Z (2016) High precision automatic assembly based on microscopic vision and force information. IEEE Trans Autom Sci Eng 13(1):382–393CrossRef
8.
go back to reference Shen F, Wu W, Yu D (2015) High precision automated 3-D assembly with attitude adjustment performed by LMTI and vision-based control. IEEE Trans Mechatron 20(4):1777– 1789CrossRef Shen F, Wu W, Yu D (2015) High precision automated 3-D assembly with attitude adjustment performed by LMTI and vision-based control. IEEE Trans Mechatron 20(4):1777– 1789CrossRef
9.
go back to reference Wang L, Ren L, Mills JK (2010) Automated 3-D micrograsping tasks performed by vision-based control. IEEE Trans Autom Sci Eng 7(3):417–426CrossRef Wang L, Ren L, Mills JK (2010) Automated 3-D micrograsping tasks performed by vision-based control. IEEE Trans Autom Sci Eng 7(3):417–426CrossRef
10.
go back to reference Andrzejewski KT, Cooper MP, Griffiths CA, Giannetti C (2018) Optimisation process for robotic assembly of electronic components. Int J Adv Manuf Technol 99:2523–2535CrossRef Andrzejewski KT, Cooper MP, Griffiths CA, Giannetti C (2018) Optimisation process for robotic assembly of electronic components. Int J Adv Manuf Technol 99:2523–2535CrossRef
11.
go back to reference Amit KB, Joel V, Lin CY (2018) Automatic robot path integration using three-dimensional vision and offline programming. Int J Adv Manuf Technol 102:1935–1950 Amit KB, Joel V, Lin CY (2018) Automatic robot path integration using three-dimensional vision and offline programming. Int J Adv Manuf Technol 102:1935–1950
12.
go back to reference Chaumette F, Hutchinson S (2006) Visual servo control, Part I: Basic approaches. IEEE Robot Autom Mag 13(4):82–90CrossRef Chaumette F, Hutchinson S (2006) Visual servo control, Part I: Basic approaches. IEEE Robot Autom Mag 13(4):82–90CrossRef
13.
go back to reference Chaumette F, Hutchinson S (2007) Visual servo control, Part II: Advanced approaches. IEEE Robot Autom Mag 14(1):109– 118CrossRef Chaumette F, Hutchinson S (2007) Visual servo control, Part II: Advanced approaches. IEEE Robot Autom Mag 14(1):109– 118CrossRef
14.
go back to reference Xu D, Lu J, Wang P, Zhang Z, Liang Z (2017) Partially decoupled image-based visual servoing using different sensitive features. IEEE Trans Syst Man Cybern Syst 47(8):2233–2243CrossRef Xu D, Lu J, Wang P, Zhang Z, Liang Z (2017) Partially decoupled image-based visual servoing using different sensitive features. IEEE Trans Syst Man Cybern Syst 47(8):2233–2243CrossRef
15.
go back to reference Vicente P, Jamone L, Bernardino A (2017) Towards markerless visual servoing of grasping tasks for humanoid robots. In: IEEE International Conference on Robotics and Automation. Singapore, pp 3811–3816 Vicente P, Jamone L, Bernardino A (2017) Towards markerless visual servoing of grasping tasks for humanoid robots. In: IEEE International Conference on Robotics and Automation. Singapore, pp 3811–3816
16.
go back to reference Chang WC (2017) Robotic assembly of smartphone back shells with eye-in-hand visual servoing. Robot Comp Integ Manuf 50:102–113CrossRef Chang WC (2017) Robotic assembly of smartphone back shells with eye-in-hand visual servoing. Robot Comp Integ Manuf 50:102–113CrossRef
17.
go back to reference Huang CY, Ho CF, Wang JH, Chen JC, Lin YH, Kuo CH, Hsu WY, Chen FZ (2019) Alignment turning system for precision lens cells. Int J Adv Manuf Technol 100:1383–1392CrossRef Huang CY, Ho CF, Wang JH, Chen JC, Lin YH, Kuo CH, Hsu WY, Chen FZ (2019) Alignment turning system for precision lens cells. Int J Adv Manuf Technol 100:1383–1392CrossRef
18.
go back to reference Tsai CY, Wong CC, Yu CJ, Liu CC, Liu TY (2015) A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place tasks. IEEE Syst J 9(1):119–130CrossRef Tsai CY, Wong CC, Yu CJ, Liu CC, Liu TY (2015) A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place tasks. IEEE Syst J 9(1):119–130CrossRef
19.
go back to reference Recatala G, Carloni R, Melchiorri C (2008) Vision-based grasp tracking for planar objects. IEEE Trans Syst Man Cybern Appl 38(6):844–849CrossRef Recatala G, Carloni R, Melchiorri C (2008) Vision-based grasp tracking for planar objects. IEEE Trans Syst Man Cybern Appl 38(6):844–849CrossRef
20.
go back to reference Ren L, Wang L, Mills JK, Sun D (2008) Vision-based 2-D automatic micrograsping using coarse-to-fine grasping strategy. IEEE Trans Ind Electron 55(9):3324–3331CrossRef Ren L, Wang L, Mills JK, Sun D (2008) Vision-based 2-D automatic micrograsping using coarse-to-fine grasping strategy. IEEE Trans Ind Electron 55(9):3324–3331CrossRef
21.
go back to reference Lei P, Zheng L, Xiao W, Li C, Wang D (2017) A closed-loop machining system for assembly interfaces of large-scale component based on extended STEP-NC. Int J Adv Manuf Technol 91:2499–2525CrossRef Lei P, Zheng L, Xiao W, Li C, Wang D (2017) A closed-loop machining system for assembly interfaces of large-scale component based on extended STEP-NC. Int J Adv Manuf Technol 91:2499–2525CrossRef
22.
go back to reference Fang Z, Xia L, Chen G, Huang Y, Xu D, Tan M (2014) Vision-based alignment control for grating tiling in petawatt-class laser system. IEEE Trans Instrum Meas 63(6):1628–1638CrossRef Fang Z, Xia L, Chen G, Huang Y, Xu D, Tan M (2014) Vision-based alignment control for grating tiling in petawatt-class laser system. IEEE Trans Instrum Meas 63(6):1628–1638CrossRef
23.
go back to reference Liu S, Xu D, Liu F, Zhang D, Zhang Z (2016) Relative pose estimation for alignment of long cylindrical components based on microscopic vision. IEEE Trans Mechatron 21(3):1388–1398CrossRef Liu S, Xu D, Liu F, Zhang D, Zhang Z (2016) Relative pose estimation for alignment of long cylindrical components based on microscopic vision. IEEE Trans Mechatron 21(3):1388–1398CrossRef
24.
go back to reference Shen Y, Wan W, Lu H (2017) Automatic sample alignment under microscopy for 360∘ imaging based on the nanorobotic manipulation system. IEEE Trans Robot 33(1):220–226CrossRef Shen Y, Wan W, Lu H (2017) Automatic sample alignment under microscopy for 360 imaging based on the nanorobotic manipulation system. IEEE Trans Robot 33(1):220–226CrossRef
25.
go back to reference Wang J, Cho H (2008) Micropeg and hole alignment using image moments based visual servoing method. IEEE Trans Ind Electron 55(3):1286–1294CrossRef Wang J, Cho H (2008) Micropeg and hole alignment using image moments based visual servoing method. IEEE Trans Ind Electron 55(3):1286–1294CrossRef
26.
go back to reference Wang P, Qin Z, Xiong Z, Lu J, Xu D, Yuan X, Liu C (2015) Robotic assembly system guided by multiple vision and laser sensors for large scale components. In: IEEE International Conference on Robotic and Biomimetics, Zhuhai, China, pp 1753–1740 Wang P, Qin Z, Xiong Z, Lu J, Xu D, Yuan X, Liu C (2015) Robotic assembly system guided by multiple vision and laser sensors for large scale components. In: IEEE International Conference on Robotic and Biomimetics, Zhuhai, China, pp 1753–1740
27.
go back to reference Liu S, Li Y, Xing D, Xu D, Su H (2018) An efficient insertion control method for precision assembly of cylindrical components. IEEE Trans Ind Electron 65(10):8062–8072CrossRef Liu S, Li Y, Xing D, Xu D, Su H (2018) An efficient insertion control method for precision assembly of cylindrical components. IEEE Trans Ind Electron 65(10):8062–8072CrossRef
28.
go back to reference Xing D, Xu D, Li H, Luo L (2014) Active calibration and its applications on micro-operating platform with multiple manipulators. In: IEEE International Conference on Robotics and Automation, Hong Kong, China, pp 5455–5460 Xing D, Xu D, Li H, Luo L (2014) Active calibration and its applications on micro-operating platform with multiple manipulators. In: IEEE International Conference on Robotics and Automation, Hong Kong, China, pp 5455–5460
29.
go back to reference Chaumette F, Hutchinson S, Corke P (2008) Visual servoing and visual tracking. Springer Handbook of Robotics. Springer, Berlin, pp 563–584CrossRef Chaumette F, Hutchinson S, Corke P (2008) Visual servoing and visual tracking. Springer Handbook of Robotics. Springer, Berlin, pp 563–584CrossRef
30.
go back to reference Ding W, Liu X, Xu D (2017) A robust detection method of control points for calibration and measurement with defocused images. IEEE Trans Instrum Meas 66(10):2725–2735CrossRef Ding W, Liu X, Xu D (2017) A robust detection method of control points for calibration and measurement with defocused images. IEEE Trans Instrum Meas 66(10):2725–2735CrossRef
31.
go back to reference Yacine B, Rosmiwati MM (2012) Position-based visual servoing through Cartesian path-planning for a grasping task. In: IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, pp 410–415 Yacine B, Rosmiwati MM (2012) Position-based visual servoing through Cartesian path-planning for a grasping task. In: IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, pp 410–415
32.
go back to reference Chen Z, Huang JB (1999) A vision-based method for the circle pose determination with a direct geometric interpretation. IEEE Trans Robot Automat 15(6):1135–1141CrossRef Chen Z, Huang JB (1999) A vision-based method for the circle pose determination with a direct geometric interpretation. IEEE Trans Robot Automat 15(6):1135–1141CrossRef
Metadata
Title
Robotic grasping and alignment for small size components assembly based on visual servoing
Authors
Yanqin Ma
Xilong Liu
Juan Zhang
De Xu
Dapeng Zhang
Wenrong Wu
Publication date
28-01-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 11-12/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04800-0

Other articles of this Issue 11-12/2020

The International Journal of Advanced Manufacturing Technology 11-12/2020 Go to the issue

Premium Partners