Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 4/2020

01-10-2020 | MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Robust and Fast Hypothesis Verification in 3D Object Recognition

Authors: Yi Lu Zheng, Xiao Fei Wang, Peng Song, Yin Long Xu

Published in: Pattern Recognition and Image Analysis | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

3D object recognition requires generating and verifying hypothesis, where a hypothesis means a hypothesized object together with a hypothesized pose of the object in the scene. Hypothesis verification is typically achieved by transforming the hypothesized object model into the scene based on its pose, estimating the overlap between the transformed model and the scene, and accepting the hypothesis if the overlap area is sufficiently large. This paper develops a robust and fast hypothesis verification approach to improve the recognition accuracy without slowing down its speed. Our key idea is to identify corresponding points in the overlap between a hypothesized model and the scene using both point position and normal, and to speed up the identification of corresponding points by utilizing a signed distance transform map defined on the model’s voxelization. Moreover, we estimate overlap area from the identified corresponding points more accurately based on an idea of area-weighted vertices. Experiments on publicly available datasets demonstrate the robustness and efficiency of our verification approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Tang, P. Song, and X. Chen, “3D object recognition in cluttered scenes with robust shape description and correspondence selection,” IEEE Access 5 (99), 1833–1845 (2017).CrossRef K. Tang, P. Song, and X. Chen, “3D object recognition in cluttered scenes with robust shape description and correspondence selection,” IEEE Access 5 (99), 1833–1845 (2017).CrossRef
2.
go back to reference Y. Guo, M. Bennamoun, F. Sohel, et al., “3D object recognition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36 (11), 2270–2287 (2014).CrossRef Y. Guo, M. Bennamoun, F. Sohel, et al., “3D object recognition in cluttered scenes with local surface features: A survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36 (11), 2270–2287 (2014).CrossRef
3.
go back to reference J. Lam and M. Greenspan, “3D object recognition by surface registration of interest segments,” in International Conference on 3d Vision. IEEE Computer Society (2013), 199–206. J. Lam and M. Greenspan, “3D object recognition by surface registration of interest segments,” in International Conference on 3d Vision. IEEE Computer Society (2013), 199–206.
4.
go back to reference A. E. Johnson and M. Hebert, “Surface matching for object recognition in complex three-dimensional scenes,” Image Vision Comput. 16 (9–10), 635–651 (1998).CrossRef A. E. Johnson and M. Hebert, “Surface matching for object recognition in complex three-dimensional scenes,” Image Vision Comput. 16 (9–10), 635–651 (1998).CrossRef
5.
go back to reference A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes,” Int. J. Comput. Vision 89 (2–3), 348–361 (2010).CrossRef A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes,” Int. J. Comput. Vision 89 (2–3), 348–361 (2010).CrossRef
6.
go back to reference P. Bariya and K. Nishino, “Scale-hierarchical 3D object recognition in cluttered scenes,” in Computer Vision and Pattern Recognition (2010), pp. 1657–1664. P. Bariya and K. Nishino, “Scale-hierarchical 3D object recognition in cluttered scenes,” in Computer Vision and Pattern Recognition (2010), pp. 1657–1664.
7.
go back to reference F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms for local surface description,” in European Conference on Computer Vision Conference on Computer Vision (Springer-Verlag, 2010), pp. 356–369. F. Tombari, S. Salti, and L. D. Stefano, “Unique signatures of histograms for local surface description,” in European Conference on Computer Vision Conference on Computer Vision (Springer-Verlag, 2010), pp. 356–369.
8.
go back to reference E. Rodolà, A. Albarelli, F. Bergamasco, et al., “A scale independent selection process for 3D object recognition in cluttered scenes,” Int. J. Comput. Vision 102 (1–3), 129–145 (2013).MathSciNetCrossRef E. Rodolà, A. Albarelli, F. Bergamasco, et al., “A scale independent selection process for 3D object recognition in cluttered scenes,” Int. J. Comput. Vision 102 (1–3), 129–145 (2013).MathSciNetCrossRef
9.
go back to reference F. Tombari and L. D. Stefano, “Hough voting for 3D object recognition under occlusion and clutter,” IPSJ Trans. Comput. 4, 20–29 (2012). F. Tombari and L. D. Stefano, “Hough voting for 3D object recognition under occlusion and clutter,” IPSJ Trans. Comput. 4, 20–29 (2012).
10.
go back to reference B. Drost, M. Ulrich, N. Navab, et al., “Model globally, match locally: Efficient and robust 3D object recognition,” in Computer Vision and Pattern Recognition (2010), pp. 998–1005. B. Drost, M. Ulrich, N. Navab, et al., “Model globally, match locally: Efficient and robust 3D object recognition,” in Computer Vision and Pattern Recognition (2010), pp. 998–1005.
11.
go back to reference G. Pang and U. Neumann, “Training-based object recognition in cluttered 3D point clouds,” in International Conference on 3DTV (2013), pp. 87–94. G. Pang and U. Neumann, “Training-based object recognition in cluttered 3D point clouds,” in International Conference on 3DTV (2013), pp. 87–94.
12.
go back to reference A. E. Johnson and M. Hebert, “Using spin images for efficient object recognition in cluttered 3D scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 21 (5), 433–449 (2002).CrossRef A. E. Johnson and M. Hebert, “Using spin images for efficient object recognition in cluttered 3D scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 21 (5), 433–449 (2002).CrossRef
13.
go back to reference A. Frome, D. Huber, R. Kolluri, et al., “Recognizing objects in range data using regional point descriptors,” Lect. Notes Comput. Sci. 3023, 224–237 (2004).CrossRef A. Frome, D. Huber, R. Kolluri, et al., “Recognizing objects in range data using regional point descriptors,” Lect. Notes Comput. Sci. 3023, 224–237 (2004).CrossRef
14.
go back to reference Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition,” in IEEE International Conference on Computer Vision Workshops (2010), pp. 689–696. Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition,” in IEEE International Conference on Computer Vision Workshops (2010), pp. 689–696.
15.
go back to reference Y. Guo, F. Sohel, M. Bennamoun, et al., “Rotational projection statistics for 3D local surface description and object recognition,” Int. J. Comput. Vision 105 (1), 63–86 (2013).MathSciNetCrossRef Y. Guo, F. Sohel, M. Bennamoun, et al., “Rotational projection statistics for 3D local surface description and object recognition,” Int. J. Comput. Vision 105 (1), 63–86 (2013).MathSciNetCrossRef
16.
go back to reference P. Song and X. Chen, “Pairwise surface registration using local voxelizer,” in Pacific Graphics Short Papers (Eurographics Assoc., 2015). P. Song and X. Chen, “Pairwise surface registration using local voxelizer,” in Pacific Graphics Short Papers (Eurographics Assoc., 2015).
17.
go back to reference K. Tang, P. Song, and X. Chen, “Signature of geometric centroids for 3D local shape description and partial shape matching,” Lect. Notes Comput. Sci. 10115 (2017). K. Tang, P. Song, and X. Chen, “Signature of geometric centroids for 3D local shape description and partial shape matching,” Lect. Notes Comput. Sci. 10115 (2017).
18.
go back to reference Y. Guo, M. Bennamoun, F. Sohel, et al., “A comprehensive performance evaluation of 3D local feature descriptors,” Int. J. Comput. Vision 116 (1), 66–89 (2016).MathSciNetCrossRef Y. Guo, M. Bennamoun, F. Sohel, et al., “A comprehensive performance evaluation of 3D local feature descriptors,” Int. J. Comput. Vision 116 (1), 66–89 (2016).MathSciNetCrossRef
19.
go back to reference P. J. Besl and N. D. Mckay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14 (2), 239–256 (2002).CrossRef P. J. Besl and N. D. Mckay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14 (2), 239–256 (2002).CrossRef
20.
go back to reference H. Chen and B. Bhanu, “3D free-form object recognition in range images using local surface patches,” Pattern Recognit. Lett. 28 (10), 1252–1262 (2007).CrossRef H. Chen and B. Bhanu, “3D free-form object recognition in range images using local surface patches,” Pattern Recognit. Lett. 28 (10), 1252–1262 (2007).CrossRef
21.
go back to reference A. Aldoma, F. Tombari, L. D. Stefano, et al., “A global hypotheses verification method for 3D object recognition,” in European Conference on Computer Vision (Berlin–Heidelberg, 2012), pp. 511–524. A. Aldoma, F. Tombari, L. D. Stefano, et al., “A global hypotheses verification method for 3D object recognition,” in European Conference on Computer Vision (Berlin–Heidelberg, 2012), pp. 511–524.
22.
go back to reference F. S. Nooruddin and G. Turk, “Simplification and repair of polygonal models using volumetric techniques,” IEEE Trans. Vision Comput. Graphics 9 (2), 191–205 (2003).CrossRef F. S. Nooruddin and G. Turk, “Simplification and repair of polygonal models using volumetric techniques,” IEEE Trans. Vision Comput. Graphics 9 (2), 191–205 (2003).CrossRef
23.
go back to reference G. J. Grevera, “The ‘Dead reckoning’ signed distance transform,” Comput. Vision Image Understanding 95 (3), 317–333 (2004).CrossRef G. J. Grevera, “The ‘Dead reckoning’ signed distance transform,” Comput. Vision Image Understanding 95 (3), 317–333 (2004).CrossRef
24.
go back to reference A. Mian, M. Bennamoun, and R. Owens, “3D model-based object recognition and segmentation in cluttered scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 28 (10), 1584–1601 (2006).CrossRef A. Mian, M. Bennamoun, and R. Owens, “3D model-based object recognition and segmentation in cluttered scenes,” IEEE Trans. Pattern Anal. Mach. Intell. 28 (10), 1584–1601 (2006).CrossRef
Metadata
Title
Robust and Fast Hypothesis Verification in 3D Object Recognition
Authors
Yi Lu Zheng
Xiao Fei Wang
Peng Song
Yin Long Xu
Publication date
01-10-2020
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 4/2020
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820040264

Other articles of this Issue 4/2020

Pattern Recognition and Image Analysis 4/2020 Go to the issue

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Descriptive Image Analysis: Part IV. Information Structure for Generating Descriptive Algorithmic Schemes for Image Recognition

PATTERN RECOGNITION AND IMAGE ANALYSIS AUTOMATED SYSTEMS, HARDWARE AND SOFTWARE

Formation of Images Based on the Sensor Data of Robots

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

An Overview on Nature-Inspired Optimization Algorithms and Their Possible Application in Image Processing Domain

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Image Classification by Mixed Finite Element Method and Orthogonal Legendre Moments

Premium Partner