Skip to main content
Top

2025 | OriginalPaper | Chapter

Robust Combiners and Universal Constructions for Quantum Cryptography

Authors : Taiga Hiroka, Fuyuki Kitagawa, Ryo Nishimaki, Takashi Yamakawa

Published in: Theory of Cryptography

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A robust combiner combines many candidates for a cryptographic primitive and generates a new candidate for the same primitive. Its correctness and security hold as long as one of the original candidates satisfies correctness and security. A universal construction is a closely related notion to a robust combiner. A universal construction for a primitive is an explicit construction of the primitive that is correct and secure as long as the primitive exists. It is known that a universal construction for a primitive can be constructed from a robust combiner for the primitive in many cases.
Although robust combiners and universal constructions for classical cryptography are widely studied, robust combiners and universal constructions for quantum cryptography have not been explored so far. In this work, we define robust combiners and universal constructions for several quantum cryptographic primitives including one-way state generators, public-key quantum money, quantum bit commitments, and unclonable encryption, and provide constructions of them.
On a different note, it was an open problem how to expand the plaintext length of unclonable encryption. In one of our universal constructions for unclonable encryption, we can expand the plaintext length, which resolves the open problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
As discussed in the previous works [AQY22, BCQ23], it is a folklore that a random quantum circuit is PRSGs although there exists no theoretical evidence so far. Since we can construct OWSGs from PRSGs [MY22b, MY22a], we can also construct OWSGs based on random quantum circuits if a random quantum circuit is PRSGs.
 
2
It is a folklore that a random quantum circuit is PRSGs although there exists no theoretical evidence so far. Since we can construct quantum bit commitments from PRSGs [MY22b, AQY22], we can also construct quantum bit commitments based on random quantum circuits if a random quantum circuit is PRSGs.
 
3
The technique we introduce here cannot be applied to public-key quantum money. For public-key quantum money, we apply the technique introduced by [HKN+05] in order to transform an incorrect candidate into a correct one. The idea of transformation is first checking the correctness of a public-key quantum money candidate \(\varSigma =(\textsf{Mint},\textsf{Vrfy})\). If the candidate \(\varSigma \) satisfies the correctness, then we amplify the correctness by parallel repetition. Otherwise, we use the scheme \(\varSigma ^*=(\textsf{Mint}^*,\textsf{Vrfy}^*)\), where \(\textsf{Vrfy}^*\) algorithm always outputs \(\top \). For details, please see the full version.
 
4
[AK21] shows that unclonable PKE can be constructed from one-time unclonable SKE and PKE with classical ciphertexts. Note that it is unclear whether we can construct unclonable PKE from one-time SKE and PKE with “quantum” ciphertexts in the same way as [AK21]. This is because they use the existence of OWFs in their proof although it is unclear whether PKE with quantum ciphertexts implies OWFs. Therefore, we use the technique of [HMNY21] instead. (For the detail, please see the full version).
 
Literature
[Aar18]
go back to reference Aaronson, S.: Shadow tomography of quantum states. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 325–338. ACM Press (2018) Aaronson, S.: Shadow tomography of quantum states. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC, pp. 325–338. ACM Press (2018)
[ABJ+19]
go back to reference Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. Part I, volume 11891 of LNCS, pp. 199–228. Springer, Heidelberg (2019) Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. Part I, volume 11891 of LNCS, pp. 199–228. Springer, Heidelberg (2019)
[AC12]
go back to reference Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: STOC, pp. 41–60. ACM (2012) Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: STOC, pp. 41–60. ACM (2012)
[AGQY22]
go back to reference Ananth, P., Gulati, A., Qian, L., Yuen, H.: Pseudorandom (function-like) quantum state generators: new definitions and applications. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I, pp. 237–265. Springer, Cham (2022) Ananth, P., Gulati, A., Qian, L., Yuen, H.: Pseudorandom (function-like) quantum state generators: new definitions and applications. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I, pp. 237–265. Springer, Cham (2022)
[AJN+16]
go back to reference Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, Part II, vol. 9815, pp. 491–520. Springer, Heidelberg (2016) Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, Part II, vol. 9815, pp. 491–520. Springer, Heidelberg (2016)
[AJS17]
go back to reference Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfuscation to functional encryption. In: EUROCRYPT (1), pp. 91–121. Springer (2017) Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfuscation to functional encryption. In: EUROCRYPT (1), pp. 91–121. Springer (2017)
[AK21]
go back to reference Ananth, P., Kaleoglu, F.: Unclonable encryption, revisited. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography, pp. 299–329. Springer, Cham (2021) Ananth, P., Kaleoglu, F.: Unclonable encryption, revisited. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography, pp. 299–329. Springer, Cham (2021)
[AKL+22]
go back to reference Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility of unclonable encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 212–241. Springer, Cham (2022) Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility of unclonable encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 212–241. Springer, Cham (2022)
[AQY22]
go back to reference Ananth, P., Qian, L., Yuen, H.: Cryptography from pseudorandom quantum states. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 208–236. Springer, Cham (2022) Ananth, P., Qian, L., Yuen, H.: Cryptography from pseudorandom quantum states. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 208–236. Springer, Cham (2022)
[BB84]
go back to reference Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175 (1984)
[BCKM21]
go back to reference Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: On the round complexity of secure quantum computation. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, Part I, vol. 12825, pp. 406–435. Springer, Heidelberg (2021) Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: On the round complexity of secure quantum computation. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, Part I, vol. 12825, pp. 406–435. Springer, Heidelberg (2021)
[BCQ23]
go back to reference Brakerski, Z., Canetti, R., Qian, L.: On the computational hardness needed for quantum cryptography. In: Kalai, Y.T. (ed.) 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, 10–13 January 2023, MIT, Cambridge. LIPIcs, vol. 251, pp. 24:1–24:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023) Brakerski, Z., Canetti, R., Qian, L.: On the computational hardness needed for quantum cryptography. In: Kalai, Y.T. (ed.) 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, 10–13 January 2023, MIT, Cambridge. LIPIcs, vol. 251, pp. 24:1–24:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
[BL20]
go back to reference Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In: Flammia, S.T. (ed.) 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2020, 9–12 June 2020, Riga. LIPIcs, vol. 158, pp. 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020) Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In: Flammia, S.T. (ed.) 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2020, 9–12 June 2020, Riga. LIPIcs, vol. 158, pp. 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
[BY22]
go back to reference Brakerski, Z., Yuen, H.: Quantum garbled circuits. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pp. 804–817. Association for Computing Machinery, New York (2022) Brakerski, Z., Yuen, H.: Quantum garbled circuits. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pp. 804–817. Association for Computing Machinery, New York (2022)
[CHK05]
go back to reference Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer, Heidelberg (2005) Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer, Heidelberg (2005)
[CLS01]
go back to reference Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)CrossRef Crépeau, C., Légaré, F., Salvail, L.: How to convert the flavor of a quantum bit commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)CrossRef
[DH76]
[DMS00]
go back to reference Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRef Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRef
[ElG85]
go back to reference ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRef ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)MathSciNetCrossRef
[FGH+12]
go back to reference Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.W.: Quantum money from knots. In: Goldwasser, S. (ed.) ITCS 2012, pp. 276–289. ACM (2012) Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.W.: Quantum money from knots. In: Goldwasser, S. (ed.) ITCS 2012, pp. 276–289. ACM (2012)
[GLSV21]
go back to reference Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is in MiniQCrypt. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, Part II, vol. 12697, pp. 531–561. Springer, Heidelberg (2021) Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is in MiniQCrypt. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, Part II, vol. 12697, pp. 531–561. Springer, Heidelberg (2021)
[GTK16]
go back to reference Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography, pp. 505–522. Springer, Heidelberg (2016) Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography, pp. 505–522. Springer, Heidelberg (2016)
[Her05]
go back to reference Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) Topics in Cryptology – CT-RSA 2005, pp. 172–190. Springer, Heidelberg (2005) Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) Topics in Cryptology – CT-RSA 2005, pp. 172–190. Springer, Heidelberg (2005)
[HKN+05]
go back to reference Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)CrossRef Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)CrossRef
[HMNY21]
go back to reference Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum encryption with certified deletion, revisited: public key, attribute-based, and classical communication. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021, pp. 606–636. Springer, Cham (2021) Hiroka, T., Morimae, T., Nishimaki, R., Yamakawa, T.: Quantum encryption with certified deletion, revisited: public key, attribute-based, and classical communication. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2021, pp. 606–636. Springer, Cham (2021)
[HMY23]
go back to reference Hhan, M., Morimae, T., Yamakawa, T.: From the hardness of detecting superpositions to cryptography: quantum public key encryption and commitments. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, pp. 639–667. Springer, Cham (2023) Hhan, M., Morimae, T., Yamakawa, T.: From the hardness of detecting superpositions to cryptography: quantum public key encryption and commitments. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, pp. 639–667. Springer, Cham (2023)
[JLS18]
go back to reference Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, Part III, vol. 10993, pp. 126–152. Springer, Heidelberg (2018) Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, Part III, vol. 10993, pp. 126–152. Springer, Heidelberg (2018)
[JMS20]
go back to reference Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, unconditionally. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, Part I, vol. 12105, pp. 141–168. Springer, Heidelberg (2020) Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, unconditionally. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, Part I, vol. 12105, pp. 141–168. Springer, Heidelberg (2020)
[KNTY19]
go back to reference Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct functional encryption: improving security and efficiency, simultaneously. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part III, vol. 11694, pp. 521–551. Springer, Heidelberg (2019) Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct functional encryption: improving security and efficiency, simultaneously. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, Part III, vol. 11694, pp. 521–551. Springer, Heidelberg (2019)
[KQST23]
go back to reference Kretschmer, W., Qian, L., Sinha, M., Tal, A.: Quantum cryptography in algorithmica. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pp. 1589–1602. Association for Computing Machinery, New York (2023) Kretschmer, W., Qian, L., Sinha, M., Tal, A.: Quantum cryptography in algorithmica. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pp. 1589–1602. Association for Computing Machinery, New York (2023)
[Kre21]
go back to reference Kretschmer, W.: Quantum pseudorandomness and classical complexity. In: Hsieh, M.-H. (ed.) 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 197, pp. 2:1–2:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2021) Kretschmer, W.: Quantum pseudorandomness and classical complexity. In: Hsieh, M.-H. (ed.) 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 197, pp. 2:1–2:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2021)
[KSS22]
go back to reference Kane, D.M., Sharif, S., Silverberg, A.: Quantum money from quaternion algebras (2022) Kane, D.M., Sharif, S., Silverberg, A.: Quantum money from quaternion algebras (2022)
[KT23]
go back to reference Khurana, D., Tomer, K.: Commitments from quantum one-wayness (2023) Khurana, D., Tomer, K.: Commitments from quantum one-wayness (2023)
[LC97]
go back to reference Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997) Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)
[Lev85]
go back to reference Levin, L.A.: One-way functions and pseudorandom generators. In: 17th ACM STOC, pp. 363–365. ACM Press (1985) Levin, L.A.: One-way functions and pseudorandom generators. In: 17th ACM STOC, pp. 363–365. ACM Press (1985)
[LMZ23]
go back to reference Liu, J., Montgomery, H., Zhandry, M.: Another round of breaking and making quantum money: In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, pp. 611–638. Springer, , Cham (2023) Liu, J., Montgomery, H., Zhandry, M.: Another round of breaking and making quantum money: In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, pp. 611–638. Springer, , Cham (2023)
[May97]
go back to reference Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRef Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRef
[MY22b]
go back to reference Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 269–295. Springer, Cham (2022) Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022, pp. 269–295. Springer, Cham (2022)
[Reg05]
go back to reference Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005) Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (2005)
[Yan22]
go back to reference Yan, J.: General properties of quantum bit commitments (extended abstract). In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, pp. 628–657. Springer, Cham (2022) Yan, J.: General properties of quantum bit commitments (extended abstract). In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, pp. 628–657. Springer, Cham (2022)
[Zha19]
go back to reference Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part III, volume 11478 of LNCS, pp. 408–438. Springer, Heidelberg (2019) Zhandry, M.: Quantum lightning never strikes the same state twice. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part III, volume 11478 of LNCS, pp. 408–438. Springer, Heidelberg (2019)
[Zha23b]
go back to reference Zhandry, M.: Quantum money from abelian group actions. IACR Cryptol. ePrint Arch. 2023, 1097 (2023) Zhandry, M.: Quantum money from abelian group actions. IACR Cryptol. ePrint Arch. 2023, 1097 (2023)
Metadata
Title
Robust Combiners and Universal Constructions for Quantum Cryptography
Authors
Taiga Hiroka
Fuyuki Kitagawa
Ryo Nishimaki
Takashi Yamakawa
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78017-2_5

Premium Partner