Skip to main content
Top
Published in: International Journal of Speech Technology 2/2018

13-04-2018

Robust front-end for audio, visual and audio–visual speech classification

Authors: Lucas D. Terissi, Gonzalo D. Sad, Juan C. Gómez

Published in: International Journal of Speech Technology | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a robust front-end for speech classification which can be employed with acoustic, visual or audio–visual information, indistinctly. Wavelet multiresolution analysis is employed to represent temporal input data associated with speech information. These wavelet-based features are then used as inputs to a Random Forest classifier to perform the speech classification. The performance of the proposed speech classification scheme is evaluated in different scenarios, namely, considering only acoustic information, only visual information (lip-reading), and fused audio–visual information. These evaluations are carried out over three different audio–visual databases, two of them public ones and the remaining one compiled by the authors of this paper. Experimental results show that a good performance is achieved with the proposed system over the three databases and for the different kinds of input information being considered. In addition, the proposed method performs better than other reported methods in the literature over the same two public databases. All the experiments were implemented using the same configuration parameters. These results also indicate that the proposed method performs satisfactorily, neither requiring the tuning of the wavelet decomposition parameters nor of the Random Forests classifier parameters, for each particular database and input modalities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahlberg, J. (2001). Candide-3: An updated parameterised face. Technical report, Linkoping: Department of Electrical Engineering, Linkping University. Ahlberg, J. (2001). Candide-3: An updated parameterised face. Technical report, Linkoping: Department of Electrical Engineering, Linkping University.
go back to reference Ahmadi, S., Ahadi, S. M., Cranen, B., & Boves, L. (2014). Sparse coding of the modulation spectrum for noise-robust automatic speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 36.CrossRef Ahmadi, S., Ahadi, S. M., Cranen, B., & Boves, L. (2014). Sparse coding of the modulation spectrum for noise-robust automatic speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 36.CrossRef
go back to reference Aleksic, P., Williams, J., Wu, Z., & Katsaggelos, A. (2002). Audio-visual continuous speech recognition using MPEG-4 compliant visual features. In Proceedings of the International Conference on Image Processing, vol 1, pp. 960–963.MATHCrossRef Aleksic, P., Williams, J., Wu, Z., & Katsaggelos, A. (2002). Audio-visual continuous speech recognition using MPEG-4 compliant visual features. In Proceedings of the International Conference on Image Processing, vol 1, pp. 960–963.MATHCrossRef
go back to reference Ali, H., Ahmad, N., Zhou, X., Iqbal, K., & Ali, S. M. (2014). Dwt features performance analysis for automatic speech recognition of Urdu. SpringerPlus, 3(1), 204.CrossRef Ali, H., Ahmad, N., Zhou, X., Iqbal, K., & Ali, S. M. (2014). Dwt features performance analysis for automatic speech recognition of Urdu. SpringerPlus, 3(1), 204.CrossRef
go back to reference Ali, H., Jianwei, A., & Iqbal, K. (2015). Automatic speech recognition of urdu digits with optimal classification approach. International Journal of Computer Applications, 118(9), 1–5.CrossRef Ali, H., Jianwei, A., & Iqbal, K. (2015). Automatic speech recognition of urdu digits with optimal classification approach. International Journal of Computer Applications, 118(9), 1–5.CrossRef
go back to reference Amer, M. R., Siddiquie, B., Khan, S., Divakaran, A., & Sawhney, H. (2014). Multimodal fusion using dynamic hybrid models. In IEEE Winter Conference on Applications of Computer Vision, pp. 556–563. Amer, M. R., Siddiquie, B., Khan, S., Divakaran, A., & Sawhney, H. (2014). Multimodal fusion using dynamic hybrid models. In IEEE Winter Conference on Applications of Computer Vision, pp. 556–563.
go back to reference Attar, M., Mosleh, M., & Ansari-Asl, K. (2010). Isolated words-recognition based on random forest classifiers. In Proceedings of 2010 4th International Conference on Intelligent Information Technology. Attar, M., Mosleh, M., & Ansari-Asl, K. (2010). Isolated words-recognition based on random forest classifiers. In Proceedings of 2010 4th International Conference on Intelligent Information Technology.
go back to reference Biswas, A., Sahu, P. K., & Chandra, M. (2016). Multiple cameras audio visual speech recognition using active appearance model visual features in car environment. International Journal of Speech Technology, 19(1), 159–171.CrossRef Biswas, A., Sahu, P. K., & Chandra, M. (2016). Multiple cameras audio visual speech recognition using active appearance model visual features in car environment. International Journal of Speech Technology, 19(1), 159–171.CrossRef
go back to reference Borde, P., Varpe, A., Manza, R., & Yannawar, P. (2015). Recognition of isolated words using Zernike and MFCC features for audio visual speech recognition. International Journal of Speech Technology, 18(2), 167–175.CrossRef Borde, P., Varpe, A., Manza, R., & Yannawar, P. (2015). Recognition of isolated words using Zernike and MFCC features for audio visual speech recognition. International Journal of Speech Technology, 18(2), 167–175.CrossRef
go back to reference Borgström, B., & Alwan, A. (2008). A low-complexity parabolic lip contour model with speaker normalization for high-level feature extraction in noise-robust audiovisual speech recognition. IEEE Transactions on Systems Man and Cybernetics, 38(6), 1273–1280.CrossRef Borgström, B., & Alwan, A. (2008). A low-complexity parabolic lip contour model with speaker normalization for high-level feature extraction in noise-robust audiovisual speech recognition. IEEE Transactions on Systems Man and Cybernetics, 38(6), 1273–1280.CrossRef
go back to reference Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123–140.MATH Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2), 123–140.MATH
go back to reference Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.MATH
go back to reference Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.MATHCrossRef Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.MATHCrossRef
go back to reference Dong, L., Foo, S. W., & Lian, Y. (2005). A two-channel training algorithm for hidden Markov model and its application to lip reading. EURASIP Journal on Advances in Signal Processing, 2005(9), 347367.MATHCrossRef Dong, L., Foo, S. W., & Lian, Y. (2005). A two-channel training algorithm for hidden Markov model and its application to lip reading. EURASIP Journal on Advances in Signal Processing, 2005(9), 347367.MATHCrossRef
go back to reference Dupont, S., & Luettin, J. (2000). Audio-visual speech modeling for continuous speech recognition. IEEE Transactions on Multimedia, 2(3), 141–151.CrossRef Dupont, S., & Luettin, J. (2000). Audio-visual speech modeling for continuous speech recognition. IEEE Transactions on Multimedia, 2(3), 141–151.CrossRef
go back to reference Estellers, V., Gurban, M., & Thiran, J. (2012). On dynamic stream weighting for audio-visual speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 20(4), 1145–1157.CrossRef Estellers, V., Gurban, M., & Thiran, J. (2012). On dynamic stream weighting for audio-visual speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 20(4), 1145–1157.CrossRef
go back to reference Farooq, O., & Datta, S. (2003a). Phoneme recognition using wavelet based features. Information Sciences, 150(1–2), 5–15.CrossRef Farooq, O., & Datta, S. (2003a). Phoneme recognition using wavelet based features. Information Sciences, 150(1–2), 5–15.CrossRef
go back to reference Farooq, O., & Datta, S. (2003b). Wavelet-based denoising for robust feature extraction for speech recognition. Electronics Letters, 39(1), 163–165.CrossRef Farooq, O., & Datta, S. (2003b). Wavelet-based denoising for robust feature extraction for speech recognition. Electronics Letters, 39(1), 163–165.CrossRef
go back to reference Foo, S., Lian, Y., & Dong, L. (2004). Recognition of visual speech elements using adaptively boosted hidden Markov models. IEEE Transactions on Circuits and Systems for Video Technology, 14(5), 693–705.CrossRef Foo, S., Lian, Y., & Dong, L. (2004). Recognition of visual speech elements using adaptively boosted hidden Markov models. IEEE Transactions on Circuits and Systems for Video Technology, 14(5), 693–705.CrossRef
go back to reference Gowdy, J., Subramanya, A., Bartels, C., & Bilmes, J. (2004). DBN based multi-stream models for audio-visual speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 993–996. Gowdy, J., Subramanya, A., Bartels, C., & Bilmes, J. (2004). DBN based multi-stream models for audio-visual speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 993–996.
go back to reference Gowdy, J. N. & Tufekci, Z. (2000). Mel-scaled discrete wavelet coefficients for speech recognition. In IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), vol 3, pp. 1351–1354. Gowdy, J. N. & Tufekci, Z. (2000). Mel-scaled discrete wavelet coefficients for speech recognition. In IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), vol 3, pp. 1351–1354.
go back to reference Gupta, M. & Gilbert, A. (2001). Robust speech recognition using wavelet coefficient features. In IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU ’01., pp. 445–448. Gupta, M. & Gilbert, A. (2001). Robust speech recognition using wavelet coefficient features. In IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU ’01., pp. 445–448.
go back to reference Hu, D., Li, X., & Lu, X. (2016). Temporal multimodal learning in audiovisual speech recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3574–3582. Hu, D., Li, X., & Lu, X. (2016). Temporal multimodal learning in audiovisual speech recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3574–3582.
go back to reference Iwano, K., Yoshinaga, T., Tamura, S., & Furui, S. (2007). Audio-visual speech recognition using lip information extracted from side-face images. EURASIP Journal on Audio, Speech, and Music Processing, 2007(1), 064506. Iwano, K., Yoshinaga, T., Tamura, S., & Furui, S. (2007). Audio-visual speech recognition using lip information extracted from side-face images. EURASIP Journal on Audio, Speech, and Music Processing, 2007(1), 064506.
go back to reference Katsaggelos, A. K., Bahaadini, S., & Molina, R. (2015). Audiovisual fusion: Challenges and new approaches. Proceedings of the IEEE, 103(9), 1635–1653.CrossRef Katsaggelos, A. K., Bahaadini, S., & Molina, R. (2015). Audiovisual fusion: Challenges and new approaches. Proceedings of the IEEE, 103(9), 1635–1653.CrossRef
go back to reference Kotnik, B., Kacic, Z., & Horvat, B. (2003). The usage of wavelet packet transformation in automatic noisy speech recognition systems. In The IEEE Region 8 EUROCON 2003. Computer as a Tool., vol. 2, pp. 131–134. Kotnik, B., Kacic, Z., & Horvat, B. (2003). The usage of wavelet packet transformation in automatic noisy speech recognition systems. In The IEEE Region 8 EUROCON 2003. Computer as a Tool., vol. 2, pp. 131–134.
go back to reference Krishnamurthy, N., & Hansen, J. (2009). Babble noise: Modeling, analysis, and applications. IEEE Transactions on Audio, Speech, and Language Processing, 17(7), 1394–1407.CrossRef Krishnamurthy, N., & Hansen, J. (2009). Babble noise: Modeling, analysis, and applications. IEEE Transactions on Audio, Speech, and Language Processing, 17(7), 1394–1407.CrossRef
go back to reference Lee, J.-S., & Park, C.-H. (2008). Robust audio-visual speech recognition based on late integration. IEEE Transactions on Multimedia, 10(5), 767–779.CrossRef Lee, J.-S., & Park, C.-H. (2008). Robust audio-visual speech recognition based on late integration. IEEE Transactions on Multimedia, 10(5), 767–779.CrossRef
go back to reference Maganti, H. K., & Matassoni, M. (2014). Auditory processing-based features for improving speech recognition in adverse acoustic conditions. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 21.CrossRef Maganti, H. K., & Matassoni, M. (2014). Auditory processing-based features for improving speech recognition in adverse acoustic conditions. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 21.CrossRef
go back to reference Matthews, I., Cootes, T., Bangham, J. A., Cox, S., & Harvey, R. (2002). Extraction of visual features for lipreading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 2002.CrossRef Matthews, I., Cootes, T., Bangham, J. A., Cox, S., & Harvey, R. (2002). Extraction of visual features for lipreading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 2002.CrossRef
go back to reference Miki, M., Kitaoka, N., Miyajima, C., Nishino, T., & Takeda, K. (2014). Improvement of multimodal gesture and speech recognition performance using time intervals between gestures and accompanying speech. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 2.CrossRef Miki, M., Kitaoka, N., Miyajima, C., Nishino, T., & Takeda, K. (2014). Improvement of multimodal gesture and speech recognition performance using time intervals between gestures and accompanying speech. EURASIP Journal on Audio, Speech, and Music Processing, 2014(1), 2.CrossRef
go back to reference Monaci, G., Vandergheynst, P., & Sommer, F. T. (2009). Learning bimodal structure in audio-visual data. IEEE Transactions on Neural Networks, 20(12), 1898–1910.CrossRef Monaci, G., Vandergheynst, P., & Sommer, F. T. (2009). Learning bimodal structure in audio-visual data. IEEE Transactions on Neural Networks, 20(12), 1898–1910.CrossRef
go back to reference Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. (2011). Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 689–696. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. (2011). Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 689–696.
go back to reference Panda, S. P., & Nayak, A. K. (2016). Automatic speech segmentation in syllable centric speech recognition system. International Journal of Speech Technology, 19(1), 9–18.CrossRef Panda, S. P., & Nayak, A. K. (2016). Automatic speech segmentation in syllable centric speech recognition system. International Journal of Speech Technology, 19(1), 9–18.CrossRef
go back to reference Papandreou, G., Katsamanis, A., Pitsikalis, V., & Maragos, P. (2009). Adaptive multimodal fusion by uncertainty compensation with application to audiovisual speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 17(3), 423–435.CrossRef Papandreou, G., Katsamanis, A., Pitsikalis, V., & Maragos, P. (2009). Adaptive multimodal fusion by uncertainty compensation with application to audiovisual speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 17(3), 423–435.CrossRef
go back to reference Pavez, E., & Silva, J. F. (2012). Analysis and design of wavelet-packet cepstral coefficients for automatic speech recognition. Speech Communication, 54(6), 814–835.CrossRef Pavez, E., & Silva, J. F. (2012). Analysis and design of wavelet-packet cepstral coefficients for automatic speech recognition. Speech Communication, 54(6), 814–835.CrossRef
go back to reference Petridis, S. & Pantic, M. (2016). Deep complementary bottleneck features for visual speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2304–2308. Petridis, S. & Pantic, M. (2016). Deep complementary bottleneck features for visual speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2304–2308.
go back to reference Potamianos, G., Graf, H. P., & Cosatto, E. (1998). An image transform approach for HMM based automatic lipreading. In Proceedings of the International Conference on Image Processing, pp. 173–177. Potamianos, G., Graf, H. P., & Cosatto, E. (1998). An image transform approach for HMM based automatic lipreading. In Proceedings of the International Conference on Image Processing, pp. 173–177.
go back to reference Potamianos, G., Neti, C., Gravier, G., & Garg, A. (2003). Recent advances in the automatic recognition of audio-visual speech. Proceedings of the IEEE, 91(9), 1306–1326.CrossRef Potamianos, G., Neti, C., Gravier, G., & Garg, A. (2003). Recent advances in the automatic recognition of audio-visual speech. Proceedings of the IEEE, 91(9), 1306–1326.CrossRef
go back to reference Potamianos, G., Neti, C., Iyengar, G., Senior, A. W., & Verma, A. (2001). A cascade visual front end for speaker independent automatic speechreading. International Journal of Speech Technology, 4(3), 193–208.MATHCrossRef Potamianos, G., Neti, C., Iyengar, G., Senior, A. W., & Verma, A. (2001). A cascade visual front end for speaker independent automatic speechreading. International Journal of Speech Technology, 4(3), 193–208.MATHCrossRef
go back to reference Puviarasan, N., & Palanivel, S. (2011). Lip reading of hearing impaired persons using HMM. Expert Systems with Applications, 38(4), 4477–4481.CrossRef Puviarasan, N., & Palanivel, S. (2011). Lip reading of hearing impaired persons using HMM. Expert Systems with Applications, 38(4), 4477–4481.CrossRef
go back to reference Rabiner, L. (1989). A tutorial on Hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef Rabiner, L. (1989). A tutorial on Hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRef
go back to reference Rajeswari, P. N. N. S. S., & Sathyanarayana, V. (2014). Robust speech recognition using wavelet domain front end and hidden Markov models. In V. Sridhar, H. S. Sheshadri, & M. C. Padma (Eds.), Emerging research in electronics, computer science and technology. New Delhi: Springer. Rajeswari, P. N. N. S. S., & Sathyanarayana, V. (2014). Robust speech recognition using wavelet domain front end and hidden Markov models. In V. Sridhar, H. S. Sheshadri, & M. C. Padma (Eds.), Emerging research in electronics, computer science and technology. New Delhi: Springer.
go back to reference Saitoh, T., Morishita, K., & Konishi, R. (2008). Analysis of efficient lip reading method for various languages. In Proceedings of the 19th International Conference on Pattern Recognition, pp. 1–4. Saitoh, T., Morishita, K., & Konishi, R. (2008). Analysis of efficient lip reading method for various languages. In Proceedings of the 19th International Conference on Pattern Recognition, pp. 1–4.
go back to reference Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 80–91.MATHCrossRef Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 80–91.MATHCrossRef
go back to reference Shen, P., Tamura, S., & Hayamizu, S. (2014). Multistream sparse representation features for noise robust audio-visual speech recognition. Acoustical Science and Technology, 35(1), 17–27.CrossRef Shen, P., Tamura, S., & Hayamizu, S. (2014). Multistream sparse representation features for noise robust audio-visual speech recognition. Acoustical Science and Technology, 35(1), 17–27.CrossRef
go back to reference Shin, J., Lee, J., & Kim, D. (2011). Real-time lip reading system for isolated Korean word recognition. Pattern Recognition, 44(3), 559–571.MATHCrossRef Shin, J., Lee, J., & Kim, D. (2011). Real-time lip reading system for isolated Korean word recognition. Pattern Recognition, 44(3), 559–571.MATHCrossRef
go back to reference Shivappa, S., Trivedi, M., & Rao, B. (2010). Audiovisual information fusion in human computer interfaces and intelligent environments: A survey. Proceedings of the IEEE, 98(10), 1692–1715.CrossRef Shivappa, S., Trivedi, M., & Rao, B. (2010). Audiovisual information fusion in human computer interfaces and intelligent environments: A survey. Proceedings of the IEEE, 98(10), 1692–1715.CrossRef
go back to reference Terissi, L. D., & Gómez, J. C. (2010). 3D head pose and facial expression tracking using a single camera. Journal of Universal Computer Science, 16(6), 903–920.MathSciNetMATH Terissi, L. D., & Gómez, J. C. (2010). 3D head pose and facial expression tracking using a single camera. Journal of Universal Computer Science, 16(6), 903–920.MathSciNetMATH
go back to reference Trottier, L., Giguère, P., & Chaib-draa, B. (2015). Feature selection for robust automatic speech recognition: a temporal offset approach. International Journal of Speech Technology, 18(3), 395–404.CrossRef Trottier, L., Giguère, P., & Chaib-draa, B. (2015). Feature selection for robust automatic speech recognition: a temporal offset approach. International Journal of Speech Technology, 18(3), 395–404.CrossRef
go back to reference Tufekci, Z., Gowdy, J. N., Gurbuz, S., & Patterson, E. (2006). Applied mel-frequency discrete wavelet coefficients and parallel model compensation for noise-robust speech recognition. Speech Communication, 48(10), 1294–1307.CrossRef Tufekci, Z., Gowdy, J. N., Gurbuz, S., & Patterson, E. (2006). Applied mel-frequency discrete wavelet coefficients and parallel model compensation for noise-robust speech recognition. Speech Communication, 48(10), 1294–1307.CrossRef
go back to reference Uluskan, S., Sangwan, A., & Hansen, J. H. L. (2017). Phoneme class based feature adaptation for mismatch acoustic modeling and recognition of distant noisy speech. International Journal of Speech Technology, 20, 799–811.CrossRef Uluskan, S., Sangwan, A., & Hansen, J. H. L. (2017). Phoneme class based feature adaptation for mismatch acoustic modeling and recognition of distant noisy speech. International Journal of Speech Technology, 20, 799–811.CrossRef
go back to reference Varga, A., & Steeneken, H. J. M. (1993). Assessment for automatic speech recognition II: NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 12(3), 247–251.CrossRef Varga, A., & Steeneken, H. J. M. (1993). Assessment for automatic speech recognition II: NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 12(3), 247–251.CrossRef
go back to reference Wang, S. L., Lau, W. H., & Leung, S. H. (2004). Automatic lip contour extraction from color images. Pattern Recognition, 37(12), 2375–2387.MATHCrossRef Wang, S. L., Lau, W. H., & Leung, S. H. (2004). Automatic lip contour extraction from color images. Pattern Recognition, 37(12), 2375–2387.MATHCrossRef
go back to reference Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6), 1031–1044.CrossRef Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6), 1031–1044.CrossRef
go back to reference Yau, W. C., Kumar, D. K., & Arjunan, S. P. (2007). Visual recognition of speech consonants using facial movement features. Integrated Computer-Aided Engineering-Informatics in Control, Automation and Robotics, 14(1), 49–61. Yau, W. C., Kumar, D. K., & Arjunan, S. P. (2007). Visual recognition of speech consonants using facial movement features. Integrated Computer-Aided Engineering-Informatics in Control, Automation and Robotics, 14(1), 49–61.
go back to reference Yin, S., Liu, C., Zhang, Z., Lin, Y., Wang, D., Tejedor, J., et al. (2015). Noisy training for deep neural networks in speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2015(1), 2.CrossRef Yin, S., Liu, C., Zhang, Z., Lin, Y., Wang, D., Tejedor, J., et al. (2015). Noisy training for deep neural networks in speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2015(1), 2.CrossRef
go back to reference Zhao, G., Barnard, M., & Pietikäinen, M. (2009). Lipreading with local spatiotemporal descriptors. IEEE Transactions on Multimedia, 11(7), 1254–1265.CrossRef Zhao, G., Barnard, M., & Pietikäinen, M. (2009). Lipreading with local spatiotemporal descriptors. IEEE Transactions on Multimedia, 11(7), 1254–1265.CrossRef
Metadata
Title
Robust front-end for audio, visual and audio–visual speech classification
Authors
Lucas D. Terissi
Gonzalo D. Sad
Juan C. Gómez
Publication date
13-04-2018
Publisher
Springer US
Published in
International Journal of Speech Technology / Issue 2/2018
Print ISSN: 1381-2416
Electronic ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-018-9504-y

Other articles of this Issue 2/2018

International Journal of Speech Technology 2/2018 Go to the issue