Abstract
Requirements of cyberphysical systems (CPS) can be rigorously specified using Signal Temporal Logic (STL). STL comes equipped with semantics that are able to quantify how robustly a given signal satisfies an STL property. In a setting where signal values over the entire time horizon of interest are available, efficient algorithms for offline computation of the robust satisfaction value have been proposed. Only a few methods exist for the online setting, i.e., where only a partial signal trace is available and rest of the signal becomes available in increments (such as in a real system or during numerical simulations). In this paper, we formalize the semantics for robust online monitoring of partial signals using the notion of robust satisfaction intervals (\(\mathtt {RoSI}\)s). We propose an efficient algorithm to compute the \(\mathtt {RoSI}\) and demonstrate its usage on two real-world case studies from the automotive domain and massively-online CPS education. As online algorithms permit early termination when the satisfaction or violation of a property is found, we show that savings in computationally expensive simulations far outweigh any overheads incurred by the online approach.