Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Robust Shared-Control for Rear-Wheel Drive Cars

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter studies the shared-control problem for the kinematic model of a group of rear-wheel drive cars in a static (i.e., time-invariant) and in a dynamic (i.e., time-varying) environment. The design of the shared controller is based on either absolute positions or “correlated positions”, such as distances to the obstacles and angle differences. The shared control is used to guarantee the safety of the car when the driver behaves dangerously. Formal properties of the closed-loop-system with shared control are established by a Lyapunov-like analysis. We also consider uncertainties in the dynamics and prove that the shared controller is able to help the driver drive the car safely in the presence of bounded disturbances. Finally, the effectiveness of the controller is verified by typical case studies, such as turning, overtaking, and emergency braking, through MATLAB simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We use (x(t), y(t)) to denote the Cartesian coordinates of the center of the rear-axle at the time instant t. The admissible Cartesian configuration set \(\mathcal{P}_a(t)\) is such that
$$ (x(t),y(t))\in \mathcal{P}_a(t), \text { for all } t\ge 0. $$
.
 
2
For each human input \(v_h\) and heading angle \(\theta \), the \(i^\mathrm{th}\) constraint is active at position p if there exists a positive \(\eta \) such that \(s_i\left( p+\eta \left[ \begin{array}{c}v_h\cos \theta \\ v_h\sin \theta \end{array}\right] \right) +t_i=0\). As a results, the constraint is said to be “active” if the car is moving towards the constraint.
 
3
The definition of the function \(\mathrm{atg}(\cdot )\), given in [8], is close to that of the standard four quadrant arctan function except that its range equals to \((-\infty ,+\infty )\) rather than \([-\pi , \pi )\). In addition, it is a smooth function with values in the range \((-\infty ,+\infty )\). Therefore \(\dot{\theta }_r^i\) always exist, which is a necessary condition for calculating \(\dot{L}^i\), where \(L^i\) is given by (2.9).
 
4
The notation \(S^i\mathcal{P}_a+T^i\) with \(S^i\in \mathbb {R}^{2\times 2}, \mathcal{P}_a\in \mathbb {R}^2\) and \(T^i\in \mathbb {R}^2\), denotes the set defined by
$$ \{x\in \mathbb {R}^2|x=S^iy+T^i, y\in \mathcal{P}_a\}. $$
.
 
5
Recall that the definition of the function atg(\(\cdot \)) is given in [8].
 
6
Note that this is a Lyapunov function only for the \(\phi \) system.
 
7
Recall that the definition of the function atg(\(\cdot \)) is given in [8].
 
Literature
1.
go back to reference Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT (2010) The human-in-the-loop design approach to the longitudinal automation system for an intelligent vehicle. IEEE Trans Syst Man Cybern 40(4):708–720 Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT (2010) The human-in-the-loop design approach to the longitudinal automation system for an intelligent vehicle. IEEE Trans Syst Man Cybern 40(4):708–720
2.
go back to reference Drage T, Kalinowski J, Braunl T (2014) Integration of drive-by-wire with navigation control for a driverless electric race car. IEEE Intell Transp Syst Mag 6(4):23–33CrossRef Drage T, Kalinowski J, Braunl T (2014) Integration of drive-by-wire with navigation control for a driverless electric race car. IEEE Intell Transp Syst Mag 6(4):23–33CrossRef
3.
go back to reference Fadilah SI, Shariff ARM (2014) A time gap interval for safe following distance (TGFD) in avoiding car collision in wireless vehicular networks (VANET) environment. In: Proceedings of international conference on intelligent systems, modelling and simulation, pp 683–689 Fadilah SI, Shariff ARM (2014) A time gap interval for safe following distance (TGFD) in avoiding car collision in wireless vehicular networks (VANET) environment. In: Proceedings of international conference on intelligent systems, modelling and simulation, pp 683–689
4.
go back to reference Ferrara A, Librino R, Massola A, Miglietta M, Vecchio C (2008) Sliding mode control for urban vehicles platooning. In: Proceedings of IEEE intelligent vehicles symposium, pp 877–882 Ferrara A, Librino R, Massola A, Miglietta M, Vecchio C (2008) Sliding mode control for urban vehicles platooning. In: Proceedings of IEEE intelligent vehicles symposium, pp 877–882
5.
go back to reference Gnatzig S, Schuller F, Lienkamp M (2012) Human-machine interaction as key technology for driverless driving - a trajectory-based shared autonomy control approach. In: Proceedings of IEEE conference on RO-MAN, Paris, pp 913–918 Gnatzig S, Schuller F, Lienkamp M (2012) Human-machine interaction as key technology for driverless driving - a trajectory-based shared autonomy control approach. In: Proceedings of IEEE conference on RO-MAN, Paris, pp 913–918
6.
go back to reference Jiang J, Astolfi A (2013) Shared-control for fully actuated linear mechanical systems. In: Proceedings of IEEE conference on decision and control, Italy Jiang J, Astolfi A (2013) Shared-control for fully actuated linear mechanical systems. In: Proceedings of IEEE conference on decision and control, Italy
7.
go back to reference Jiang J, Astolfi A (2014) Shared-control for the kinematic model of a mobile robot. In: Proceedings of IEEE conference on decision and control, USA Jiang J, Astolfi A (2014) Shared-control for the kinematic model of a mobile robot. In: Proceedings of IEEE conference on decision and control, USA
8.
go back to reference Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of american control conference, USA Jiang J, Astolfi A (2015) Shared-control for the kinematic model of a rear-wheel drive car. In: Proceedings of american control conference, USA
9.
go back to reference Jiang J, Astolfi A (2016) Shared-control for typical driving scenarios. In: submitted to european control conference, Denmark Jiang J, Astolfi A (2016) Shared-control for typical driving scenarios. In: submitted to european control conference, Denmark
10.
go back to reference Kianfar R, Augusto B, Ebadighajari A, Hakeem U, Nilsson J, Raza A, Tabar RS, Irukulapati NV, Englund C, Falcone P, Papanastasiou S, Svensson L, Wymeersch H (2012) Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans Intell Transp Syst 13(3):994–1007CrossRef Kianfar R, Augusto B, Ebadighajari A, Hakeem U, Nilsson J, Raza A, Tabar RS, Irukulapati NV, Englund C, Falcone P, Papanastasiou S, Svensson L, Wymeersch H (2012) Design and experimental validation of a cooperative driving system in the grand cooperative driving challenge. IEEE Trans Intell Transp Syst 13(3):994–1007CrossRef
11.
go back to reference Kim JS, Ryu JH (2013) Shared teleoperation of a vehicle with a virtual driving interface. In: Proceedings of IEEE international conference on control, automation and systems, Gwangju, pp 51–857 Kim JS, Ryu JH (2013) Shared teleoperation of a vehicle with a virtual driving interface. In: Proceedings of IEEE international conference on control, automation and systems, Gwangju, pp 51–857
12.
go back to reference Lee U, Yoon S, Shim HC, Vasseur P (2014) Local path planning in a complex environment for self-driving car. In: Proceedings of IEEE annual international conference on cyber technology in automation, control, and intelligent systems, Hong Kong, pp 445–450 Lee U, Yoon S, Shim HC, Vasseur P (2014) Local path planning in a complex environment for self-driving car. In: Proceedings of IEEE annual international conference on cyber technology in automation, control, and intelligent systems, Hong Kong, pp 445–450
13.
go back to reference Lilly JH (2007) Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle. IEEE Trans Fuzzy Syst 15(4):718–728CrossRef Lilly JH (2007) Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle. IEEE Trans Fuzzy Syst 15(4):718–728CrossRef
14.
go back to reference Massera Filho C, Wolf DF, Grassi V, Osorio FS (2014) Longitudinal and lateral control for autonomous ground vehicles. In: Proceedings of IEEE symposium on intelligent vehicles, pp 588–593 Massera Filho C, Wolf DF, Grassi V, Osorio FS (2014) Longitudinal and lateral control for autonomous ground vehicles. In: Proceedings of IEEE symposium on intelligent vehicles, pp 588–593
15.
go back to reference McGann C, Py F, Rajan K, Ryan J, Henthorn R (2008) Adaptive control for autonomous underwater vehicles. In: Proceedings of AAAI conference on artificial intelligence, pp 1319–1324 McGann C, Py F, Rajan K, Ryan J, Henthorn R (2008) Adaptive control for autonomous underwater vehicles. In: Proceedings of AAAI conference on artificial intelligence, pp 1319–1324
16.
go back to reference Michalek M, Kielczewski M (2013) Helping a driver in backward docking with n-trailer vehicles by the passive control-assistance system. In: Proceedings of IEEE international conference on intelligent transportation systems, pp 1993–1999 Michalek M, Kielczewski M (2013) Helping a driver in backward docking with n-trailer vehicles by the passive control-assistance system. In: Proceedings of IEEE international conference on intelligent transportation systems, pp 1993–1999
17.
go back to reference Mohajerpoor R, Dezfuli SS, Bahadori B (2013) Teleoperation of an unmanned car via robust adaptive backstepping control approach. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, pp 1540–1545 Mohajerpoor R, Dezfuli SS, Bahadori B (2013) Teleoperation of an unmanned car via robust adaptive backstepping control approach. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, pp 1540–1545
18.
20.
go back to reference Wang J, Zhang L, Zhang D, Li K (2009) Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intell Transp Syst Mag 1(1):10–19CrossRef Wang J, Zhang L, Zhang D, Li K (2009) Cooperative (rather than autonomous) vehicle-highway automation systems. IEEE Intell Transp Syst Mag 1(1):10–19CrossRef
21.
go back to reference Wang J, Zhang L, Zhang D, Li K (2012) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12CrossRef Wang J, Zhang L, Zhang D, Li K (2012) An adaptive longitudinal driving assistance system based on driver characteristics. IEEE Trans Intell Transp Syst 14(1):1–12CrossRef
22.
go back to reference Zhou SH, Yasunobu S (2006) A cooperative auto-driving system based on fuzzy instruction. In: Proceedings of 7th international symposium on advanced intelligent systems, pp 300–304 Zhou SH, Yasunobu S (2006) A cooperative auto-driving system based on fuzzy instruction. In: Proceedings of 7th international symposium on advanced intelligent systems, pp 300–304
Metadata
Title
Robust Shared-Control for Rear-Wheel Drive Cars
Authors
Jingjing Jiang
Alessandro Astolfi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-40533-9_2