Skip to main content
Top
Published in: Neural Processing Letters 3/2019

06-07-2018

Robust Support Vector Regression in Primal with Asymmetric Huber Loss

Authors: S. Balasundaram, Yogendra Meena

Published in: Neural Processing Letters | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As real world data sets in general contain noise, construction of robust regression learning models to fit data with noise is an important and challenging research problem. It is all the more difficult to learn regression function with good generalization performance for input samples corrupted by asymmetric noise and outliers. In this work, we propose novel robust regularized support vector regression models with asymmetric Huber and ε-insensitive Huber loss functions leading to strongly convex minimization problems in simpler form whose solutions are obtained by simple functional iterative method. Numerical experiments performed on (1) synthetic data sets with different noise models and having outliers; (2) real world data sets, clearly show the effectiveness and applicability of the proposed support vector regression models with asymmetric Huber loss.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balasundaram S, Kapil (2010) On Lagrangian support vector regression. Expert Syst Appl 37:8784–8792CrossRef Balasundaram S, Kapil (2010) On Lagrangian support vector regression. Expert Syst Appl 37:8784–8792CrossRef
2.
go back to reference Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San FranciscoMATH Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San FranciscoMATH
3.
go back to reference Camps-Valls G, Bruzzone L, Rojo-Alvarez JL (2006) Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci Remote Sens Lett 3(3):339–343CrossRef Camps-Valls G, Bruzzone L, Rojo-Alvarez JL (2006) Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci Remote Sens Lett 3(3):339–343CrossRef
5.
go back to reference Chen C, Yan C, Guo B, Liu G (2017) A robust algorithm of support vector regression with a trimmed Huber loss function in the primal. Soft Comput 21(18):5235–5243CrossRef Chen C, Yan C, Guo B, Liu G (2017) A robust algorithm of support vector regression with a trimmed Huber loss function in the primal. Soft Comput 21(18):5235–5243CrossRef
6.
go back to reference Chu W, Keerthi SS, Ong CJ (2004) Baysian support vector regression using a unified loss function. IEEE Trans Neural Netw 15(1):29–44CrossRef Chu W, Keerthi SS, Ong CJ (2004) Baysian support vector regression using a unified loss function. IEEE Trans Neural Netw 15(1):29–44CrossRef
7.
go back to reference Chuang CC, Lee ZJ (2011) Hybrid robust support vector machines for regression with outliers. Appl Soft Comput 11:64–72CrossRef Chuang CC, Lee ZJ (2011) Hybrid robust support vector machines for regression with outliers. Appl Soft Comput 11:64–72CrossRef
8.
go back to reference Chuang CC, Su SF, Jeng JT, Hsiao CC (2002) Robust support vector regression networks for function approximation with outliers. IEEE Trans. Neural Netw. 13(6):1322–1330CrossRef Chuang CC, Su SF, Jeng JT, Hsiao CC (2002) Robust support vector regression networks for function approximation with outliers. IEEE Trans. Neural Netw. 13(6):1322–1330CrossRef
9.
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel based learning method. Cambridge University Press, CambridgeCrossRefMATH Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel based learning method. Cambridge University Press, CambridgeCrossRefMATH
10.
go back to reference Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
11.
go back to reference Gretton A, Doucet A, Herbrich R, Rayner PJW, Scholkopf B (2001) Support vector regression for black-box system identification. In: Proceedings of the 11th IEEE workshop on statistical signal processing Gretton A, Doucet A, Herbrich R, Rayner PJW, Scholkopf B (2001) Support vector regression for black-box system identification. In: Proceedings of the 11th IEEE workshop on statistical signal processing
12.
go back to reference Guitton A, Symes WW (2003) Robust inversion of seismic data using the Huber norm. Geophysics 68(4):1310–1319CrossRef Guitton A, Symes WW (2003) Robust inversion of seismic data using the Huber norm. Geophysics 68(4):1310–1319CrossRef
13.
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machine. Mach Learn 46:389–422CrossRefMATH Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machine. Mach Learn 46:389–422CrossRefMATH
14.
go back to reference Hao P-Y (2017) Pairing support vector algorithm for data regression. Neurocomputing 225:174–187CrossRef Hao P-Y (2017) Pairing support vector algorithm for data regression. Neurocomputing 225:174–187CrossRef
15.
16.
go back to reference Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36(5):984–997CrossRef Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36(5):984–997CrossRef
17.
19.
20.
go back to reference Kassam SA, Moustakides G, Shin JG (1982) Robust detection of known signals in asymmetric noise. IEEE Trans Inf Theory IT 28(1):84–91MathSciNetCrossRefMATH Kassam SA, Moustakides G, Shin JG (1982) Robust detection of known signals in asymmetric noise. IEEE Trans Inf Theory IT 28(1):84–91MathSciNetCrossRefMATH
21.
go back to reference Lin CF, Wang SD (2002) Fuzzy support vector machine. IEEE Trans Neural Netw 13(2):464–471CrossRef Lin CF, Wang SD (2002) Fuzzy support vector machine. IEEE Trans Neural Netw 13(2):464–471CrossRef
22.
go back to reference Liu M, Xu C, Xu C, Tao D (2017) Fast SVM trained by divide-and-conquer anchors. In: Proceedings 26th international conference on artificial intelligence (IJCAI-17), pp 2322–2328 Liu M, Xu C, Xu C, Tao D (2017) Fast SVM trained by divide-and-conquer anchors. In: Proceedings 26th international conference on artificial intelligence (IJCAI-17), pp 2322–2328
24.
go back to reference Mangasarian OL, Musicant D (2000) Robust linear and support vector regression. IEEE Trans Pattern Anal Mach Intell 22(9):950–955CrossRef Mangasarian OL, Musicant D (2000) Robust linear and support vector regression. IEEE Trans Pattern Anal Mach Intell 22(9):950–955CrossRef
25.
go back to reference Min JE, Lee YC (2005) Bankruptcy prediction using optimal choice of kernel function parameters. Expert Syst Appl 28(4):603–614CrossRef Min JE, Lee YC (2005) Bankruptcy prediction using optimal choice of kernel function parameters. Expert Syst Appl 28(4):603–614CrossRef
26.
go back to reference Osuna F, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceediings of the computer vision and pattern recognition, pp 130–136 Osuna F, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceediings of the computer vision and pattern recognition, pp 130–136
27.
go back to reference Peng X, Xu D, Shen J (2014) A twin projection support vector machine for data regression. Neurocomputing 138:131–141CrossRef Peng X, Xu D, Shen J (2014) A twin projection support vector machine for data regression. Neurocomputing 138:131–141CrossRef
28.
go back to reference Scholkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1207–1245CrossRef Scholkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New support vector algorithms. Neural Comput 12(5):1207–1245CrossRef
29.
go back to reference Sjoberg J, Zhang Q, Ljung L, Berveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A (1995) Nonlinear black-box modeling in system identification: a unified overview. Automatica 31:1691–1724MathSciNetCrossRefMATH Sjoberg J, Zhang Q, Ljung L, Berveniste A, Delyon B, Glorennec P, Hjalmarsson H, Juditsky A (1995) Nonlinear black-box modeling in system identification: a unified overview. Automatica 31:1691–1724MathSciNetCrossRefMATH
30.
go back to reference Smola AJ (1998) Regression estimation with support vector learning machines, Master’s thesis. Technical Univ, Munchen, Munich, Germany Smola AJ (1998) Regression estimation with support vector learning machines, Master’s thesis. Technical Univ, Munchen, Munich, Germany
31.
go back to reference Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85–105CrossRefMATH Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1):85–105CrossRefMATH
32.
go back to reference Suykens JAK, Gestel Van, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, SingaporeCrossRefMATH Suykens JAK, Gestel Van, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, SingaporeCrossRefMATH
33.
go back to reference Takeuchi I, Bengio Y, Kanamori T (2001) Robust regression with asymmetric heavy-tail noise distributions, Technical Report 1198, Universite de Montreal Takeuchi I, Bengio Y, Kanamori T (2001) Robust regression with asymmetric heavy-tail noise distributions, Technical Report 1198, Universite de Montreal
34.
35.
go back to reference Wang X, Tan L, He L (2014) A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140:41–52CrossRef Wang X, Tan L, He L (2014) A robust least squares support vector machine for regression and classification with noise. Neurocomputing 140:41–52CrossRef
36.
go back to reference Ye YF, Bai L, Hua XY, Shao YH, Wang Z, Deng NY (2016) Weighted Lagrange ε-twin support vector regression. Neurocomputing 197:53–68CrossRef Ye YF, Bai L, Hua XY, Shao YH, Wang Z, Deng NY (2016) Weighted Lagrange ε-twin support vector regression. Neurocomputing 197:53–68CrossRef
37.
go back to reference You S, Xu C, Wang Y, Xu C and Tao D (2017) Privileged multi-label learning. In: Proceedings of the 26th international conference on artificial intelligence (IJCAI-17), pp 3336–3342 You S, Xu C, Wang Y, Xu C and Tao D (2017) Privileged multi-label learning. In: Proceedings of the 26th international conference on artificial intelligence (IJCAI-17), pp 3336–3342
38.
go back to reference Zhang XG (1999) Using class-centre vectors to build support vector machines. In: Proceedings of the IEEE signal processing Society workshop, New York, IEEE Press, pp 3–11 Zhang XG (1999) Using class-centre vectors to build support vector machines. In: Proceedings of the IEEE signal processing Society workshop, New York, IEEE Press, pp 3–11
39.
go back to reference Zhao Y, Sun J (2008) Robust support vector regression in the primal. Neural Networks 21:1548–1555CrossRefMATH Zhao Y, Sun J (2008) Robust support vector regression in the primal. Neural Networks 21:1548–1555CrossRefMATH
40.
go back to reference Zhu J, Hoi SCH, Lyu MRT (2008) Robust regularized kernel regression. IEEE Trans Syst Man Cybern Part B Cybern 38(6):1639–1644CrossRef Zhu J, Hoi SCH, Lyu MRT (2008) Robust regularized kernel regression. IEEE Trans Syst Man Cybern Part B Cybern 38(6):1639–1644CrossRef
Metadata
Title
Robust Support Vector Regression in Primal with Asymmetric Huber Loss
Authors
S. Balasundaram
Yogendra Meena
Publication date
06-07-2018
Publisher
Springer US
Published in
Neural Processing Letters / Issue 3/2019
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9875-8

Other articles of this Issue 3/2019

Neural Processing Letters 3/2019 Go to the issue