Skip to main content
Top
Published in:

26-04-2019

Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method

Authors: Md. Matiur Rahaman, Md. Nurul Haque Mollah

Published in: Journal of Classification | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of classification is to classify new objects into one of the several known populations. A common problem in most of the existing classifiers is that they are very much sensitive to outliers. To overcome this problem, several author’s attempt to robustify some classifiers including Gaussian Bayes classifiers based on robust estimation of mean vectors and covariance matrices. However, these type of robust classifiers work well when only training datasets are contaminated by outliers. They produce misleading results like the traditional classifiers when the test data vectors are contaminated by outliers as well. Most of them also show weak performance if we gradually increase the number of variables in the dataset by fixing the sample size. As the remedies of these problems, an attempt is made to propose a highly robust Gaussian Bayes classifiers by the minimum β-divergence method. The performance of the proposed method depends on the value of tuning parameter β, initialization of Gaussian parameters, detection of outlying test vectors, and detection of their variable-wise outlying components. We have discussed some techniques in this paper to improve the performance of the proposed method by tackling these issues. The proposed classifier reduces to the MLE-based Gaussian Bayes classifier when β → 0. The performance of the proposed method is investigated using both synthetic and real datasets. It is observed that the proposed method improves the performance over the traditional and other robust linear classifiers in presence of outliers. Otherwise, it keeps equal performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Appendix
This content is only visible if you are logged in and have the appropriate permissions.
Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Robustification of Gaussian Bayes Classifier by the Minimum β-Divergence Method
Authors
Md. Matiur Rahaman
Md. Nurul Haque Mollah
Publication date
26-04-2019
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2019
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-019-9306-1

Premium Partner