Skip to main content
Top
Published in:

13-07-2023 | Original Paper

Rockburst Prediction and Evaluation Model for Hard Rock Engineering Based on Extreme Gradient Boosting Ensemble Learning and SHAP Value

Authors: Long Chen, Shunchuan Wu, Aibing Jin, Chaojun Zhang, Xue Li

Published in: Geotechnical and Geological Engineering | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rockburst prediction is the basis of rockburst prevention and construction guidance. However, the complexity of the rock burst occurrence mechanism and inducing factors and the suddenness and randomness of rock burst behavior make the accurate prediction of rock bursts very difficult. In this study, the eXtreme Gradient Boosting (XGBoost) algorithm is used to learn and predict the rockburst intensity of a database including 341 rockburst cases worldwide. A procedure for parameter optimization of XGBoost combined with grid search and cross validation methods is proposed. It improves the prediction performance, effectively avoids overfitting and also improves the operation efficiency. The model predicted 7 typical rockburst cases that occurred at Jinping II Hydropower Station, and the results showed that the GC-XGBoost model performs well in predicting rockburst intensity. In addition, compared with typical supervised learning models (SVM and RF), the model showed improved prediction performance. SHapley Additive exPlanations (SHAP, a game theoretic approach) was used to study the importance of feature parameters. The SHAP values showed that Wet and \(\sigma_{{\uptheta }}\) are the two most important feature parameters for predicting rockburst intensity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Adoko AC, Gokceoglu C, Wu L, Zuo QJ (2013) Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int J Rock Mech Min 61:86–95CrossRef Adoko AC, Gokceoglu C, Wu L, Zuo QJ (2013) Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int J Rock Mech Min 61:86–95CrossRef
go back to reference Afraei S, Shahriar K, Madani SH (2019) Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1 Literature review and data preprocessing procedure. Tunn Undergr Sp Tech 83:324–353CrossRef Afraei S, Shahriar K, Madani SH (2019) Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1 Literature review and data preprocessing procedure. Tunn Undergr Sp Tech 83:324–353CrossRef
go back to reference Baltz R, Hucke A (2008) Rockburst prevention in the German coal industry. In: Proceedings of the 27th international conference on ground control in mining. Morgantown, pp 46–50 Baltz R, Hucke A (2008) Rockburst prevention in the German coal industry. In: Proceedings of the 27th international conference on ground control in mining. Morgantown, pp 46–50
go back to reference Blake W, Hedley DGF (2003) Rockbursts: case studies from North American hard-rock mines. SME Blake W, Hedley DGF (2003) Rockbursts: case studies from North American hard-rock mines. SME
go back to reference Cai M (2016) Prediction and prevention of rockburst in metal mines–a case study of Sanshandao gold mine. J Rock Mech Geotech 8(2):204–211CrossRef Cai M (2016) Prediction and prevention of rockburst in metal mines–a case study of Sanshandao gold mine. J Rock Mech Geotech 8(2):204–211CrossRef
go back to reference Chen TQ, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794 Chen TQ, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794
go back to reference Chen DF, Feng XT, Yang CX, Chen BR, Qiu SL, Xu DP (2013) Neural network estimation of rockburst damage severity based on engineering cases. In: Proc., Sinorock2013 Symp. London, pp 457–463 Chen DF, Feng XT, Yang CX, Chen BR, Qiu SL, Xu DP (2013) Neural network estimation of rockburst damage severity based on engineering cases. In: Proc., Sinorock2013 Symp. London, pp 457–463
go back to reference Dou LM, Chen TJ, Gong SY, He H, Zhang SB (2012) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 50:736–740CrossRef Dou LM, Chen TJ, Gong SY, He H, Zhang SB (2012) Rockburst hazard determination by using computed tomography technology in deep workface. Saf Sci 50:736–740CrossRef
go back to reference Du ZJ, Xu MG, Liu ZP, Wu X (2006) Laboratory integrated evaluation method for engineering wall rock rock-burst. Gold 27(11):26–30 Du ZJ, Xu MG, Liu ZP, Wu X (2006) Laboratory integrated evaluation method for engineering wall rock rock-burst. Gold 27(11):26–30
go back to reference Faradonbeh RS, Taheri A, e Sousa LR, Karakus M (2020) Rockburst assessment in deep geotechnical conditions using true-triaxial tests and data-driven approaches. Int J Rock Mech Mining Sci. 128:104279CrossRef Faradonbeh RS, Taheri A, e Sousa LR, Karakus M (2020) Rockburst assessment in deep geotechnical conditions using true-triaxial tests and data-driven approaches. Int J Rock Mech Mining Sci. 128:104279CrossRef
go back to reference Feng XT, Chen BR, Zhang CQ, Li XJ, Wu SY (2013) Mechanism, warning and dynamic control of rock burst development process. Science Press, Beijing Feng XT, Chen BR, Zhang CQ, Li XJ, Wu SY (2013) Mechanism, warning and dynamic control of rock burst development process. Science Press, Beijing
go back to reference Guo DP, Chen HM, Tang LB, Chen ZX, Samui P (2022) Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model. Acta Geotech 17(4):1183–1205CrossRef Guo DP, Chen HM, Tang LB, Chen ZX, Samui P (2022) Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model. Acta Geotech 17(4):1183–1205CrossRef
go back to reference Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr 11(10):389–392CrossRef Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr 11(10):389–392CrossRef
go back to reference Iannacchione AT, Zelanko JC (1995) Occurrence and remediation of coal mine bumps: a historical review. Proceedings: mechanics and mitigation of violent failure in coal and Hard-rock mines. Washington, DC, U.S Iannacchione AT, Zelanko JC (1995) Occurrence and remediation of coal mine bumps: a historical review. Proceedings: mechanics and mitigation of violent failure in coal and Hard-rock mines. Washington, DC, U.S
go back to reference Ji B, Xie F, Wang XP, He SQ, Song DZ (2020) Investigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithm. IEEE Access 8:58817–58828CrossRef Ji B, Xie F, Wang XP, He SQ, Song DZ (2020) Investigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithm. IEEE Access 8:58817–58828CrossRef
go back to reference Kidybinski A (1981) Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstr 18(4):295–304CrossRef Kidybinski A (1981) Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstr 18(4):295–304CrossRef
go back to reference Li N, Jimenez R (2018) A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat Hazards 90:197–215CrossRef Li N, Jimenez R (2018) A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat Hazards 90:197–215CrossRef
go back to reference Li N, Jimenez R, Feng XD (2017a) The influence of bayesian networks structure on rock burst hazard prediction with incomplete data. Proc Eng 191:206–214CrossRef Li N, Jimenez R, Feng XD (2017a) The influence of bayesian networks structure on rock burst hazard prediction with incomplete data. Proc Eng 191:206–214CrossRef
go back to reference Li TZ, Li YX, Yang XL (2017b) Rock burst prediction based on genetic algorithms and extreme learning machine. J Cent South Univ 24(9):2105–2113CrossRef Li TZ, Li YX, Yang XL (2017b) Rock burst prediction based on genetic algorithms and extreme learning machine. J Cent South Univ 24(9):2105–2113CrossRef
go back to reference Li DY, Liu ZD, Xiao P, Zhou J, Armaghani DJ (2022) Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr Space 7(5):833–846CrossRef Li DY, Liu ZD, Xiao P, Zhou J, Armaghani DJ (2022) Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr Space 7(5):833–846CrossRef
go back to reference Li ML, Li KG, Qin QC (2023) A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application. Tunn Undergr Sp Tech 134:104978CrossRef Li ML, Li KG, Qin QC (2023) A rockburst prediction model based on extreme learning machine with improved Harris Hawks optimization and its application. Tunn Undergr Sp Tech 134:104978CrossRef
go back to reference Liang W, Zhao G, Wang X, Zhao J, Ma C (2019) Assessing the rockburst risk for deep shafts via distance-based multi-criteria decision making approaches with hesitant fuzzy information. Eng Geol 260:105211CrossRef Liang W, Zhao G, Wang X, Zhao J, Ma C (2019) Assessing the rockburst risk for deep shafts via distance-based multi-criteria decision making approaches with hesitant fuzzy information. Eng Geol 260:105211CrossRef
go back to reference Liu R, Ye YC, Hu NY, Chen H, Wang XH (2018) Classified prediction model of rockburst using rough sets-normal cloud. Neural Comput Appl 31:8185–8193CrossRef Liu R, Ye YC, Hu NY, Chen H, Wang XH (2018) Classified prediction model of rockburst using rough sets-normal cloud. Neural Comput Appl 31:8185–8193CrossRef
go back to reference Liu QS, Xue YG, Li GK, Qiu DH, Zhang WM, Guo ZZ, Li ZQ (2023) Application of KM-SMOTE for rockburst intelligent prediction[J]. Tunn Undergr Sp Tech 138:105180CrossRef Liu QS, Xue YG, Li GK, Qiu DH, Zhang WM, Guo ZZ, Li ZQ (2023) Application of KM-SMOTE for rockburst intelligent prediction[J]. Tunn Undergr Sp Tech 138:105180CrossRef
go back to reference Ma TH, Tang CA, Tang LX, Zhang WD, Wang L (2015) Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn Undergr Sp Tech 49:345–368CrossRef Ma TH, Tang CA, Tang LX, Zhang WD, Wang L (2015) Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn Undergr Sp Tech 49:345–368CrossRef
go back to reference Ma K, Shen QQ, Sun XY, Ma TH, Hu J, Tang CA (2023) Rockburst prediction model using machine learning based on microseismic parameters of Qinling water conveyance tunnel. J Cent South Univ 30(1):289–305CrossRef Ma K, Shen QQ, Sun XY, Ma TH, Hu J, Tang CA (2023) Rockburst prediction model using machine learning based on microseismic parameters of Qinling water conveyance tunnel. J Cent South Univ 30(1):289–305CrossRef
go back to reference Martin C, Kaiser P, McCreath D (1999) Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36(1):136–151CrossRef Martin C, Kaiser P, McCreath D (1999) Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36(1):136–151CrossRef
go back to reference Potvin Y, Hudyma M, Jewell RJ (2000) Rockburst and seismic activity in underground Australian mines-an introduction to a new research project. In: ISRM International Symposium Potvin Y, Hudyma M, Jewell RJ (2000) Rockburst and seismic activity in underground Australian mines-an introduction to a new research project. In: ISRM International Symposium
go back to reference Pu Y, Apel DB, Pourrahimian Y, Chen J (2019) Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks. Arch Min Sci 64(2):279–296 Pu Y, Apel DB, Pourrahimian Y, Chen J (2019) Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks. Arch Min Sci 64(2):279–296
go back to reference Rastegarmanesh A, Moosavi M, Kalhor A (2021) A data-driven fuzzy model for prediction of rockburst. Georisk 15(2):152–164 Rastegarmanesh A, Moosavi M, Kalhor A (2021) A data-driven fuzzy model for prediction of rockburst. Georisk 15(2):152–164
go back to reference Russenes BF (1974) Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology Russenes BF (1974) Analysis of rock spalling for tunnels in steep valley sides. Norwegian Institute of Technology
go back to reference Shapley LS (1953) A value for n-persons games. Ann Math Stud 28:307–318 Shapley LS (1953) A value for n-persons games. Ann Math Stud 28:307–318
go back to reference Shi XZ, Zhou J, Dong L, Hu HY, Wang HY, Chen SR (2010) Application of unascertained measurement model to prediction of classification of rockburst intensity. Chin J Rock Mech Eng 29(1):2720–2726 Shi XZ, Zhou J, Dong L, Hu HY, Wang HY, Chen SR (2010) Application of unascertained measurement model to prediction of classification of rockburst intensity. Chin J Rock Mech Eng 29(1):2720–2726
go back to reference Shukla R, Khandelwal M, Kankar PK (2021) Prediction and assessment of rock burst using various meta-heuristic approaches. Mining Metall Explor 38(3):1375–1381 Shukla R, Khandelwal M, Kankar PK (2021) Prediction and assessment of rock burst using various meta-heuristic approaches. Mining Metall Explor 38(3):1375–1381
go back to reference Singh SP (1987) The influence of rock properties on the occurrence and control of rockbursts. Min Sci Technol 5:11–18CrossRef Singh SP (1987) The influence of rock properties on the occurrence and control of rockbursts. Min Sci Technol 5:11–18CrossRef
go back to reference Sun YT, Li GC, Yang S (2021a) Rockburst interpretation by a data-driven approach: a comparative study. Math Basel 9(22):2965 Sun YT, Li GC, Yang S (2021a) Rockburst interpretation by a data-driven approach: a comparative study. Math Basel 9(22):2965
go back to reference Sun YT, Li GC, Zhang JF, Huang JD (2021b) Rockburst intensity evaluation by a novel systematic and evolved approach: machine learning booster and application. B Eng Geol Environ 80(11):8385–8395CrossRef Sun YT, Li GC, Zhang JF, Huang JD (2021b) Rockburst intensity evaluation by a novel systematic and evolved approach: machine learning booster and application. B Eng Geol Environ 80(11):8385–8395CrossRef
go back to reference Thai DK, Tu TM, Bui TQ, Bui TT (2021) Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads. Eng Comput 37(1):597–608CrossRef Thai DK, Tu TM, Bui TQ, Bui TT (2021) Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads. Eng Comput 37(1):597–608CrossRef
go back to reference Wang JA, Park HD (2001) Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn Undergr Sp Tech 16(1):49–57CrossRef Wang JA, Park HD (2001) Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn Undergr Sp Tech 16(1):49–57CrossRef
go back to reference Wang M, Zhu ZM, Liu JH (2012) The photoelastic analysis of stress intensity factor for cracks around a tunnel. Appl Mech Mater 142:197–200CrossRef Wang M, Zhu ZM, Liu JH (2012) The photoelastic analysis of stress intensity factor for cracks around a tunnel. Appl Mech Mater 142:197–200CrossRef
go back to reference Wu S, Wu Z, Zhang C (2019) Rock burst prediction probability model based on case analysis. Tunn Undergr Space Technol 93:103069CrossRef Wu S, Wu Z, Zhang C (2019) Rock burst prediction probability model based on case analysis. Tunn Undergr Space Technol 93:103069CrossRef
go back to reference Xie XB, Li DX, Kong LY, Ye YF, Gao S (2020) Rockburst propensity prediction model based on CRITIC-XGB algorithm. Chin J Rock Mech Eng 39(10):1975–1982 Xie XB, Li DX, Kong LY, Ye YF, Gao S (2020) Rockburst propensity prediction model based on CRITIC-XGB algorithm. Chin J Rock Mech Eng 39(10):1975–1982
go back to reference Xu LS, Wang LS (1999) Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road. Chin J Geotech Eng 21(5):569–572 Xu LS, Wang LS (1999) Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road. Chin J Geotech Eng 21(5):569–572
go back to reference Xue YG, Zhang XL, Li SC, Qiu DH, Su MX, Li LP, Li ZQ, Tao YF (2018) Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model. Eng Geol 232:94–103CrossRef Xue YG, Zhang XL, Li SC, Qiu DH, Su MX, Li LP, Li ZQ, Tao YF (2018) Analysis of factors influencing tunnel deformation in loess deposits by data mining: a deformation prediction model. Eng Geol 232:94–103CrossRef
go back to reference Xue YG, Bai CH, Kong FM, Qiu DH, Li LP, Su MX, Zhao Y (2020) A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria. Eng Geol 268:105515CrossRef Xue YG, Bai CH, Kong FM, Qiu DH, Li LP, Su MX, Zhao Y (2020) A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria. Eng Geol 268:105515CrossRef
go back to reference Zhang CQ, Feng XT, Zhou H, Qiu SL, Wu WP (2012) Case histories of four extremely intense rockbursts in deep tunnels. Rock Mech Rock Eng 45(3):275–288CrossRef Zhang CQ, Feng XT, Zhou H, Qiu SL, Wu WP (2012) Case histories of four extremely intense rockbursts in deep tunnels. Rock Mech Rock Eng 45(3):275–288CrossRef
go back to reference Zhang JF, Wang YH, Sun YT, Li GC (2020) Strength of ensemble learning in multiclass classification of rockburst intensity. Int J Numer Anal Met 44(13):1833–1853CrossRef Zhang JF, Wang YH, Sun YT, Li GC (2020) Strength of ensemble learning in multiclass classification of rockburst intensity. Int J Numer Anal Met 44(13):1833–1853CrossRef
go back to reference Zhou J, Li XB, Shi XZ (2012) Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Sci 50(4):629–644CrossRef Zhou J, Li XB, Shi XZ (2012) Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Sci 50(4):629–644CrossRef
go back to reference Zhou J, Li X, Mitri HS (2016) Classification of rockburst in underground projects: comparison of ten supervised learning methods. J Comput Civil Eng. 30(5):04016003CrossRef Zhou J, Li X, Mitri HS (2016) Classification of rockburst in underground projects: comparison of ten supervised learning methods. J Comput Civil Eng. 30(5):04016003CrossRef
go back to reference Zhou J, Li XB, Mitri HS (2018a) Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Sp Tech 81:632–659CrossRef Zhou J, Li XB, Mitri HS (2018a) Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Sp Tech 81:632–659CrossRef
go back to reference Zhou XP, Peng SL, Zhang JZ, Qian QH, Lu RC (2018b) Predictive acoustical behavior of rockburst phenomena in Gaoligongshan tunnel, Dulong river highway. China Eng Geol 247:117–128CrossRef Zhou XP, Peng SL, Zhang JZ, Qian QH, Lu RC (2018b) Predictive acoustical behavior of rockburst phenomena in Gaoligongshan tunnel, Dulong river highway. China Eng Geol 247:117–128CrossRef
go back to reference Zhou J, Guo HQ, Koopialipoor M (2020a) Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Eng Comput 1:1–16 Zhou J, Guo HQ, Koopialipoor M (2020a) Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Eng Comput 1:1–16
go back to reference Zhou J, Yang PX, Pi PG, Khandelwal M, Qiu YG (2023) Performance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid models. Mining Metall Explor 40:617–635 Zhou J, Yang PX, Pi PG, Khandelwal M, Qiu YG (2023) Performance evaluation of rockburst prediction based on PSO-SVM, HHO-SVM, and MFO-SVM hybrid models. Mining Metall Explor 40:617–635
Metadata
Title
Rockburst Prediction and Evaluation Model for Hard Rock Engineering Based on Extreme Gradient Boosting Ensemble Learning and SHAP Value
Authors
Long Chen
Shunchuan Wu
Aibing Jin
Chaojun Zhang
Xue Li
Publication date
13-07-2023
Publisher
Springer International Publishing
Published in
Geotechnical and Geological Engineering / Issue 7/2023
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-023-02496-4