Skip to main content
Top

2025 | OriginalPaper | Chapter

RoGUENeRF: A Robust Geometry-Consistent Universal Enhancer for NeRF

Authors : Sibi Catley-Chandar, Richard Shaw, Gregory Slabaugh, Eduardo Pérez-Pellitero

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent advances in neural rendering have enabled highly photorealistic 3D scene reconstruction and novel view synthesis. Despite this progress, current state-of-the-art methods struggle to reconstruct high frequency detail, due to factors such as a low-frequency bias of radiance fields and inaccurate camera calibration. One approach to mitigate this issue is to enhance images post-rendering. 2D enhancers can be pre-trained to recover some detail but are agnostic to scene geometry and do not easily generalize to new distributions of image degradation. Conversely, existing 3D enhancers are able to transfer detail from nearby training images in a generalizable manner, but suffer from inaccurate camera calibration and can propagate errors from the geometry into rendered images. We propose a neural rendering enhancer, RoGUENeRF, which exploits the best of both paradigms. Our method is pre-trained to learn a general enhancer while also leveraging information from nearby training images via robust 3D alignment and geometry-aware fusion. Our approach restores high-frequency textures while maintaining geometric consistency and is also robust to inaccurate camera calibration. We show that RoGUENeRF substantially enhances the rendering quality of a wide range of neural rendering baselines, e.g. improving the PSNR of MipNeRF360 by 0.63dB and Nerfacto by 1.34dB on the real world 360v2 dataset. Project page: https://​sib1.​github.​io/​projects/​roguenerf/​.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aittala, M., Durand, F.: Burst image deblurring using permutation invariant convolutional neural networks. In: ECCV (2018) Aittala, M., Durand, F.: Burst image deblurring using permutation invariant convolutional neural networks. In: ECCV (2018)
2.
go back to reference Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV, pp. 5835–5844 (2021) Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV, pp. 5835–5844 (2021)
3.
go back to reference Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022) Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)
4.
go back to reference Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023) Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
5.
go back to reference Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-NeRF: optimising neural radiance field with no pose prior. In: CVPR, pp. 4160–4169 (2023) Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-NeRF: optimising neural radiance field with no pose prior. In: CVPR, pp. 4160–4169 (2023)
6.
go back to reference Catley-Chandar, S., Tanay, T., Vandroux, L., Leonardis, A., Slabaugh, G., Pérez-Pellitero, E.: FlexHDR: modeling alignment and exposure uncertainties for flexible HDR imaging. IEEE TIP 31 (2022) Catley-Chandar, S., Tanay, T., Vandroux, L., Leonardis, A., Slabaugh, G., Pérez-Pellitero, E.: FlexHDR: modeling alignment and exposure uncertainties for flexible HDR imaging. IEEE TIP 31 (2022)
8.
9.
go back to reference Huang, X., Li, W., Hu, J., Chen, H., Wang, Y.: RefSR-NeRF: towards high fidelity and super resolution view synthesis. In: CVPR, pp. 8244–8253. IEEE Computer Society, Los Alamitos (2023) Huang, X., Li, W., Hu, J., Chen, H., Wang, Y.: RefSR-NeRF: towards high fidelity and super resolution view synthesis. In: CVPR, pp. 8244–8253. IEEE Computer Society, Los Alamitos (2023)
10.
go back to reference Işık, M., et al.: HumanRF: high-fidelity neural radiance fields for humans in motion. ACM TOG 42(4), 1–12 (2023)CrossRef Işık, M., et al.: HumanRF: high-fidelity neural radiance fields for humans in motion. ACM TOG 42(4), 1–12 (2023)CrossRef
11.
go back to reference Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR, pp. 406–413. IEEE (2014) Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR, pp. 406–413. IEEE (2014)
12.
go back to reference Jiang, Y., et al.: AligNeRF: high-fidelity neural radiance fields via alignment-aware training. In: CVPR, pp. 46–55 (2023) Jiang, Y., et al.: AligNeRF: high-fidelity neural radiance fields via alignment-aware training. In: CVPR, pp. 46–55 (2023)
13.
go back to reference Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating exposures. Comput. Graph. Forum (2019) Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating exposures. Comput. Graph. Forum (2019)
14.
go back to reference Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV, pp. 5148–5157 (2021) Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: MUSIQ: multi-scale image quality transformer. In: ICCV, pp. 5148–5157 (2021)
15.
go back to reference Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
16.
go back to reference Li, T., Slavcheva, M., et al.: Neural 3D video synthesis from multi-view video. In: CVPR, pp. 5511–5521 (2021) Li, T., Slavcheva, M., et al.: Neural 3D video synthesis from multi-view video. In: CVPR, pp. 5511–5521 (2021)
17.
go back to reference Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: ICCV (2021) Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: ICCV (2021)
18.
go back to reference Liu, Y.L., et al.: Robust dynamic radiance fields. In: CVPR (2023) Liu, Y.L., et al.: Robust dynamic radiance fields. In: CVPR (2023)
19.
go back to reference Maintainers, T., Contributors: TorchVision: PyTorch’s Computer Vision library (2016) Maintainers, T., Contributors: TorchVision: PyTorch’s Computer Vision library (2016)
20.
go back to reference Meuleman, A., et al.: Progressively optimized local radiance fields for robust view synthesis. In: CVPR, pp. 16539–16548 (2023) Meuleman, A., et al.: Progressively optimized local radiance fields for robust view synthesis. In: CVPR, pp. 16539–16548 (2023)
21.
go back to reference Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: CVPR (2022) Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: CVPR (2022)
22.
go back to reference Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM TOG (2019) Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM TOG (2019)
23.
24.
go back to reference Moreau, A., Piasco, N., Tsishkou, D.V., Stanciulescu, B., de La Fortelle, A.: LENS: localization enhanced by nerf synthesis. In: Conference on Robot Learning (2021) Moreau, A., Piasco, N., Tsishkou, D.V., Stanciulescu, B., de La Fortelle, A.: LENS: localization enhanced by nerf synthesis. In: Conference on Robot Learning (2021)
25.
go back to reference Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., Pérez-Pellitero, E.: Human gaussian splatting: Real-time rendering of animatable avatars. In: CVPR (2024) Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., Pérez-Pellitero, E.: Human gaussian splatting: Real-time rendering of animatable avatars. In: CVPR (2024)
26.
go back to reference Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM TOG 41(4) (2022) Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM TOG 41(4) (2022)
27.
go back to reference Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: CVPR (2021) Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: CVPR (2021)
28.
go back to reference Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (2023) Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: CamP: camera preconditioning for neural radiance fields. ACM Trans. Graph. (2023)
29.
go back to reference Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, pp. 8024–8035. Curran Associates, Inc. (2019) Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, pp. 8024–8035. Curran Associates, Inc. (2019)
30.
go back to reference Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV (2021) Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV (2021)
31.
go back to reference Peng, S., Yan, Y., Shuai, Q., Bao, H., Zhou, X.: Representing volumetric videos as dynamic MLP maps. In: CVPR (2023) Peng, S., Yan, Y., Shuai, Q., Bao, H., Zhou, X.: Representing volumetric videos as dynamic MLP maps. In: CVPR (2023)
32.
go back to reference Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2020) Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2020)
33.
go back to reference Raoult, V., Reid-Anderson, S., Ferri, A., Williamson, J.E.: How reliable is structure from motion (SfM) over time and between observers? A case study using coral reef bommies. Remote Sens. 9(7) (2017) Raoult, V., Reid-Anderson, S., Ferri, A., Williamson, J.E.: How reliable is structure from motion (SfM) over time and between observers? A case study using coral reef bommies. Remote Sens. 9(7) (2017)
34.
go back to reference Roessle, B., Müller, N., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: GANeRF: leveraging discriminators to optimize neural radiance fields. ACM TOG (2023) Roessle, B., Müller, N., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: GANeRF: leveraging discriminators to optimize neural radiance fields. ACM TOG (2023)
35.
go back to reference Rong, X., Huang, J.B., Saraf, A., Kim, C., Kopf, J.: Boosting view synthesis with residual transfer. In: CVPR (2022) Rong, X., Huang, J.B., Saraf, A., Kim, C., Kopf, J.: Boosting view synthesis with residual transfer. In: CVPR (2022)
36.
go back to reference Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022) Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: CVPR (2022)
37.
go back to reference Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016) Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
39.
40.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
41.
go back to reference Tanay, T., Leonardis, A., Maggioni, M.: Efficient view synthesis and 3D-based multi-frame denoising with multiplane feature representations. In: CVPR (2023) Tanay, T., Leonardis, A., Maggioni, M.: Efficient view synthesis and 3D-based multi-frame denoising with multiplane feature representations. In: CVPR (2023)
42.
go back to reference Tanay, T., Maggioni, M.: Global latent neural rendering. In: CVPR (2024) Tanay, T., Maggioni, M.: Global latent neural rendering. In: CVPR (2024)
43.
go back to reference Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020) Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)
44.
go back to reference Tancik, M., et al.: NeRFStudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH 2023 (2023) Tancik, M., et al.: NeRFStudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH 2023 (2023)
45.
go back to reference Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: CVPR, pp. 4190–4200 (2023) Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: CVPR, pp. 4190–4200 (2023)
46.
go back to reference Turki, H., et al.: HybridNeRF: efficient neural rendering via adaptive volumetric surfaces. In: Computer Vision and Pattern Recognition (CVPR) (2024) Turki, H., et al.: HybridNeRF: efficient neural rendering via adaptive volumetric surfaces. In: Computer Vision and Pattern Recognition (CVPR) (2024)
47.
go back to reference Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022) Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)
48.
go back to reference Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: CVPR, pp. 3835–3844 (2022) Wang, C., Chai, M., He, M., Chen, D., Liao, J.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: CVPR, pp. 3835–3844 (2022)
49.
go back to reference Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: ACM MM, MM 2022, pp. 6445–6454. Association for Computing Machinery, New York (2022) Wang, C., Wu, X., Guo, Y.C., Zhang, S.H., Tai, Y.W., Hu, S.M.: NeRF-SR: high quality neural radiance fields using supersampling. In: ACM MM, MM 2022, pp. 6445–6454. Association for Computing Machinery, New York (2022)
50.
go back to reference Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: NeuS2: fast learning of neural implicit surfaces for multi-view reconstruction. In: ICCV (2023) Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.: NeuS2: fast learning of neural implicit surfaces for multi-view reconstruction. In: ICCV (2023)
51.
go back to reference Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: UFormer: a general U-shaped transformer for image restoration. In: CVPR, pp. 17683–17693 (2022) Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: UFormer: a general U-shaped transformer for image restoration. In: CVPR, pp. 17683–17693 (2022)
52.
go back to reference Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004) Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
53.
go back to reference Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graph. Forum (2022) Xie, Y., et al.: Neural fields in visual computing and beyond. Comput. Graph. Forum (2022)
54.
go back to reference Xu, L., et al.: VR-NeRF: high-fidelity virtualized walkable spaces. In: SIGGRAPH Asia Conference Proceedings (2023) Xu, L., et al.: VR-NeRF: high-fidelity virtualized walkable spaces. In: SIGGRAPH Asia Conference Proceedings (2023)
55.
go back to reference Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: CVPR, pp. 1751–1760 (2019) Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: CVPR, pp. 1751–1760 (2019)
56.
go back to reference Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: ICCV (2021) Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: ICCV (2021)
58.
go back to reference Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018) Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
59.
go back to reference Zhou, K., Li, W., Jiang, N., Han, X., Lu, J.: From NeRFLiX to NeRFLiX++: a general nerf-agnostic restorer paradigm. IEEE TPAMI 1–17 (2023) Zhou, K., Li, W., Jiang, N., Han, X., Lu, J.: From NeRFLiX to NeRFLiX++: a general nerf-agnostic restorer paradigm. IEEE TPAMI 1–17 (2023)
60.
go back to reference Zhou, K., et al.: NeRFLiX: high-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In: CVPR, pp. 12363–12374 (2023) Zhou, K., et al.: NeRFLiX: high-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In: CVPR, pp. 12363–12374 (2023)
Metadata
Title
RoGUENeRF: A Robust Geometry-Consistent Universal Enhancer for NeRF
Authors
Sibi Catley-Chandar
Richard Shaw
Gregory Slabaugh
Eduardo Pérez-Pellitero
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_4

Premium Partner