Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2014

01-09-2014 | Original Paper

Role of graphene in structural transformation of zirconium oxide

Authors: Sumita Rani, Mukesh Kumar, Sumit Sharma, Dinesh Kumar

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fine powders of zirconium oxide (ZrO2) were prepared using zirconium oxychloride by combustion method. The crystalline size of pure ZrO2 was in range of 14–45 nm. Graphene was incorporated in ZrO2 using graphene oxide as precursor and reducing it with hydrazine hydrate. X-Ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analysis and Raman spectroscopy methods were used to characterize the samples. The role of graphene in structural transformation of ZrO2 to monoclinic phase was clearly observed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shuping P, Hoi TN, Xinliang F, Klaus M (2009) Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv Mater 21:3488–3491CrossRef Shuping P, Hoi TN, Xinliang F, Klaus M (2009) Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv Mater 21:3488–3491CrossRef
2.
go back to reference Qi S, Shuping P, Vajiheh A, Chen L, Xinliang F, Klaus M (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195CrossRef Qi S, Shuping P, Vajiheh A, Chen L, Xinliang F, Klaus M (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195CrossRef
3.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
4.
go back to reference Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
5.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
6.
go back to reference Michael JM, Je-Luen L, Douglas HA, Hannes CS, Ahmed AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruda RK, Ilhan AA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef Michael JM, Je-Luen L, Douglas HA, Hannes CS, Ahmed AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruda RK, Ilhan AA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef
7.
go back to reference Yongchao S, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef Yongchao S, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRef
8.
go back to reference Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721CrossRef Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721CrossRef
9.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
10.
go back to reference Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef
11.
go back to reference Sungjin P, Rodney SR (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Sungjin P, Rodney SR (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
12.
go back to reference Yanwu Z, Weiwei C, Richard PD, Aruna V, Rodney RS (2009) Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett 95:103104CrossRef Yanwu Z, Weiwei C, Richard PD, Aruna V, Rodney RS (2009) Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett 95:103104CrossRef
13.
go back to reference Laura CJ, Franklin K, Jiaxing H (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049CrossRef Laura CJ, Franklin K, Jiaxing H (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049CrossRef
14.
go back to reference Williams G, Seger B, Kamat PV (2008) TiO2- graphene nanocomposites. UV–assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491CrossRef Williams G, Seger B, Kamat PV (2008) TiO2- graphene nanocomposites. UV–assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491CrossRef
15.
go back to reference Abolfazli M, Tamizi far M, Arzani K, Naghizadeh R (2013) Study the effect of zirconia to increase the abrasion resistance and density in alumina–zirconia system. J Basic Appl Sci Res 3:40–48 Abolfazli M, Tamizi far M, Arzani K, Naghizadeh R (2013) Study the effect of zirconia to increase the abrasion resistance and density in alumina–zirconia system. J Basic Appl Sci Res 3:40–48
16.
go back to reference Miura N, Nakatou M, Zhuiykov S (2002) Impedance-based total-NOx sensor using stabilized zirconia and ZnCrzO4 sensing electrode operating at high temperature. Electrochem Commun 4:284–287CrossRef Miura N, Nakatou M, Zhuiykov S (2002) Impedance-based total-NOx sensor using stabilized zirconia and ZnCrzO4 sensing electrode operating at high temperature. Electrochem Commun 4:284–287CrossRef
17.
go back to reference Lia L, Wang W (2003) Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach. Solid State Commun 127:639–643CrossRef Lia L, Wang W (2003) Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach. Solid State Commun 127:639–643CrossRef
18.
go back to reference Krumov E, Dikova J, Starbova K, Popov D, Blaskov V, Kolev K, Laude LD (2003) Thin ZrO2 sol–gel films for catalytic application. J Mater Sci: Mater Electron 14:759–760 Krumov E, Dikova J, Starbova K, Popov D, Blaskov V, Kolev K, Laude LD (2003) Thin ZrO2 sol–gel films for catalytic application. J Mater Sci: Mater Electron 14:759–760
19.
go back to reference Bokhimi X, Morales A, Novaro O, López T, Gómez R (2000) The effect of hydrolysis initiator on the phase formation in sulfated sol–gel zirconia. Polyhedron 19:2283–2287CrossRef Bokhimi X, Morales A, Novaro O, López T, Gómez R (2000) The effect of hydrolysis initiator on the phase formation in sulfated sol–gel zirconia. Polyhedron 19:2283–2287CrossRef
20.
go back to reference Rifki S, Bambang SP, Suhanda S (2013) Effect of the hydrolysis catalyst NH4OH on the preparation of calcia stabilized zirconia with sugar as a masking agent at low temperatures. J Aust Ceram Soc 49:101–108 Rifki S, Bambang SP, Suhanda S (2013) Effect of the hydrolysis catalyst NH4OH on the preparation of calcia stabilized zirconia with sugar as a masking agent at low temperatures. J Aust Ceram Soc 49:101–108
21.
go back to reference Jelena PM, Slobodan KM (2006) Synthesis of zirconia colloidal dispersions by forced hydrolysis. J Serb Chem Soc 71:613–619CrossRef Jelena PM, Slobodan KM (2006) Synthesis of zirconia colloidal dispersions by forced hydrolysis. J Serb Chem Soc 71:613–619CrossRef
22.
go back to reference Xinmei L, Gaoqing L, Zifeng Y (2003) Preliminary synthesis and characterization of mesoporous nanocrystalline zirconia. J Nat Gas Chem 12:161–166 Xinmei L, Gaoqing L, Zifeng Y (2003) Preliminary synthesis and characterization of mesoporous nanocrystalline zirconia. J Nat Gas Chem 12:161–166
23.
go back to reference Shi-Chang Z, Messin Gary L, Michael B (1990) Synthesis of solid, spherical zirconia particles by spray pyrolysis. J Am Chem Soc 73:61–67 Shi-Chang Z, Messin Gary L, Michael B (1990) Synthesis of solid, spherical zirconia particles by spray pyrolysis. J Am Chem Soc 73:61–67
24.
go back to reference Hergen E, Brian M (1995) Tissue Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas- phase condensation with cw-CO2 laser heating. Mater Lett 24:261–265CrossRef Hergen E, Brian M (1995) Tissue Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas- phase condensation with cw-CO2 laser heating. Mater Lett 24:261–265CrossRef
25.
go back to reference Jian L, Haixue Y, Mike JR, Kyle J (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193CrossRef Jian L, Haixue Y, Mike JR, Kyle J (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193CrossRef
26.
go back to reference Jingming G, Xingju M, Huifang W, Dandan S (2012) Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sens Actuators B Chem 162:341–347CrossRef Jingming G, Xingju M, Huifang W, Dandan S (2012) Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sens Actuators B Chem 162:341–347CrossRef
27.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
28.
go back to reference Chen KL, Anthony STC, Tsao HK (2001) Preparation of zirconia nanocrystals from concentrated zirconium aqueous solutions. J Nanopart Res 3:119–126CrossRef Chen KL, Anthony STC, Tsao HK (2001) Preparation of zirconia nanocrystals from concentrated zirconium aqueous solutions. J Nanopart Res 3:119–126CrossRef
29.
go back to reference Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M (2004) Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization. Carbon 42:1995–1999CrossRef Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M (2004) Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization. Carbon 42:1995–1999CrossRef
30.
go back to reference Mishra M, Kuppusami P, Singh A, Ramya S, Sivasubramanian V, Mohandas E (2012) Phase evolution in zirconia thin films prepared by pulsed laser deposition. Appl Surf Sci 258:5157–5165CrossRef Mishra M, Kuppusami P, Singh A, Ramya S, Sivasubramanian V, Mohandas E (2012) Phase evolution in zirconia thin films prepared by pulsed laser deposition. Appl Surf Sci 258:5157–5165CrossRef
31.
go back to reference Fillit R, Schafer RJ, Bruyas RH, Thevenot RF (1987) Quantitative XRD analysis of zirconia-toughened alumina ceramics. J Mater Sci 22:3566–3570CrossRef Fillit R, Schafer RJ, Bruyas RH, Thevenot RF (1987) Quantitative XRD analysis of zirconia-toughened alumina ceramics. J Mater Sci 22:3566–3570CrossRef
32.
go back to reference Bansal GK, Heuer AH (1975) Precipitation in partially stabilized zirconia. J Am Ceram Soc 58:235–238CrossRef Bansal GK, Heuer AH (1975) Precipitation in partially stabilized zirconia. J Am Ceram Soc 58:235–238CrossRef
33.
go back to reference Gutzov S, Ponahlo J, Christian LL, Beran A (1994) Phase characterization of precipitated zirconia. J Am Ceram Soc 77:1649–1652CrossRef Gutzov S, Ponahlo J, Christian LL, Beran A (1994) Phase characterization of precipitated zirconia. J Am Ceram Soc 77:1649–1652CrossRef
34.
go back to reference Benedetti A, Fagherazzi G, Pinna F (1989) Preparation and structural characterization of ultrafine zirconia powders. J Am Ceram Soc 72:467–469CrossRef Benedetti A, Fagherazzi G, Pinna F (1989) Preparation and structural characterization of ultrafine zirconia powders. J Am Ceram Soc 72:467–469CrossRef
35.
go back to reference Siu GG, Stokes MJ (1999) Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature. Phys Rev 59:3173–3179CrossRef Siu GG, Stokes MJ (1999) Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature. Phys Rev 59:3173–3179CrossRef
36.
go back to reference Damilola AD, Madhivanan M, Gerardine GB (2010) Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using gaussian basis sets and isotopic substitution. J Phys Chem B 114:9323–9329CrossRef Damilola AD, Madhivanan M, Gerardine GB (2010) Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using gaussian basis sets and isotopic substitution. J Phys Chem B 114:9323–9329CrossRef
37.
go back to reference Jorio A, Dresselhaus M, Saito R, Dresselhaus GF (2011) Raman spectroscopy in graphene related systems. Wiley, New YorkCrossRef Jorio A, Dresselhaus M, Saito R, Dresselhaus GF (2011) Raman spectroscopy in graphene related systems. Wiley, New YorkCrossRef
38.
go back to reference Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501CrossRef Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501CrossRef
39.
go back to reference Zhang T, Zhang D, Shen MA (2009) Low-cost method for preliminary separation of reduced graphene oxide nanosheet. J Mater Lett 63:2051–2054CrossRef Zhang T, Zhang D, Shen MA (2009) Low-cost method for preliminary separation of reduced graphene oxide nanosheet. J Mater Lett 63:2051–2054CrossRef
40.
go back to reference Zhenghai T, Liqun Z, Chunfang Z, Tengfei L, Baochun G (2012) General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 8:9214–9220CrossRef Zhenghai T, Liqun Z, Chunfang Z, Tengfei L, Baochun G (2012) General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 8:9214–9220CrossRef
41.
go back to reference Yanxia H, Jiansheng L, Xujie Y, Xin W, Lude L (2004) Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization. Mater Sci Eng A 367:243–247CrossRef Yanxia H, Jiansheng L, Xujie Y, Xin W, Lude L (2004) Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization. Mater Sci Eng A 367:243–247CrossRef
Metadata
Title
Role of graphene in structural transformation of zirconium oxide
Authors
Sumita Rani
Mukesh Kumar
Sumit Sharma
Dinesh Kumar
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2014
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3401-x

Other articles of this Issue 3/2014

Journal of Sol-Gel Science and Technology 3/2014 Go to the issue

Premium Partners