Skip to main content
Top

2018 | OriginalPaper | Chapter

3. Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids

Authors : Yana Bagbi, Arvind Pandey, Pratima R. Solanki

Published in: Nanomaterials and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent scenarios, the development of nanotechnology with novel size, shape, and surface dependent properties has revealed incredible prospective for the treatment of environmental problems especially toxic heavy metals from contaminated water. As compared with traditional materials, a nanosized particle exhibits to a large extent efficiency and faster remediation rates in water treatment. Many kinds of nanomaterials such as carbon, nanometal/metal oxides, and polymer based have high selectivity and adsorption potential for the remediation of heavy metals/metalloids such as As5+, As3+, Pb2+, Cr3+, Cr6+, Hg2+, Co2+, Ni2+, Cd2+, and Cu2+ from contaminated water. This chapter gives a widespread analysis on the enduring research and progress activities in the field of remediation of toxic heavy metals/metalloids from contaminated water by using nanomaterials in order to achieve environmental detoxification, using adsorption process. We have also discussed the essential aspects of heavy metals problems on environment; their effects on human health through polluted water are reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)CrossRef X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)CrossRef
2.
go back to reference T. Rajeswari, N. Sailaja, Impact of heavy metals on environmental pollution. J. Chem. Pharm. Sci. 42(3), 175–181 (2014) T. Rajeswari, N. Sailaja, Impact of heavy metals on environmental pollution. J. Chem. Pharm. Sci. 42(3), 175–181 (2014)
3.
go back to reference R. Kundra, R. Sachdeva, S. Attar, M. P, Studies on the removal of heavy metal ions from industrial waste water by using titanium electrodes. J Curr. Chem. Pharm. Sc. 2(1), 11 (2012) R. Kundra, R. Sachdeva, S. Attar, M. P, Studies on the removal of heavy metal ions from industrial waste water by using titanium electrodes. J Curr. Chem. Pharm. Sc. 2(1), 11 (2012)
4.
go back to reference M. Jamil, M.S. Zia, M. Qasim, Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation. J. Chem. Soc. Pak. 32(3), 370–378 (2010) M. Jamil, M.S. Zia, M. Qasim, Contamination of agro-ecosystem and human health hazards from wastewater used for irrigation. J. Chem. Soc. Pak. 32(3), 370–378 (2010)
5.
go back to reference S. Khan, Q. Cao, Y. Zheng, Y. Huang, Y. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China. Environ. pollut. 152(3), 686–692 (2008)CrossRef S. Khan, Q. Cao, Y. Zheng, Y. Huang, Y. Zhu, Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China. Environ. pollut. 152(3), 686–692 (2008)CrossRef
6.
go back to reference M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)CrossRef M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42(16), 5843–5859 (2008)CrossRef
7.
go back to reference F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011)CrossRef F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011)CrossRef
8.
go back to reference L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes (Springer, 2005)CrossRef L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes (Springer, 2005)CrossRef
9.
go back to reference M.E. Ersahin, H. Ozgun, R.K. Dereli, I. Ozturk, K. Roest, J.B. van Lier, A review on dynamic membrane filtration: materials, applications and future perspectives. Biores. Technol. 122, 196–206 (2012)CrossRef M.E. Ersahin, H. Ozgun, R.K. Dereli, I. Ozturk, K. Roest, J.B. van Lier, A review on dynamic membrane filtration: materials, applications and future perspectives. Biores. Technol. 122, 196–206 (2012)CrossRef
10.
go back to reference Y. Xing, X. Chen, D. Wang, Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ. Sci. Technol. 41(4), 1439–1443 (2007)CrossRef Y. Xing, X. Chen, D. Wang, Electrically regenerated ion exchange for removal and recovery of Cr (VI) from wastewater. Environ. Sci. Technol. 41(4), 1439–1443 (2007)CrossRef
11.
go back to reference A. Bodalo-Santoyo, J. Gómez-Carrasco, E. Gomez-Gomez, F. Maximo-Martin, A. Hidalgo-Montesinos, Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)CrossRef A. Bodalo-Santoyo, J. Gómez-Carrasco, E. Gomez-Gomez, F. Maximo-Martin, A. Hidalgo-Montesinos, Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)CrossRef
12.
go back to reference I. Rykowska, W. Wasiak, J. Byra, Extraction of copper ions using silica gel with chemically modified surface. Chem. Pap. 62(3), 255–259 (2008) I. Rykowska, W. Wasiak, J. Byra, Extraction of copper ions using silica gel with chemically modified surface. Chem. Pap. 62(3), 255–259 (2008)
13.
go back to reference F.C. Walsh, G.W. Reade, Electrochemical techniques for the treatment of dilute metal-ion solutions. Stud. Environ. Sci. 59, 3–44 (1994)CrossRef F.C. Walsh, G.W. Reade, Electrochemical techniques for the treatment of dilute metal-ion solutions. Stud. Environ. Sci. 59, 3–44 (1994)CrossRef
14.
go back to reference G. Batley, Y. Farrar, Irradiation techniques for the release of bound heavy metals in natural waters and blood. Anal. Chim. Acta 99(2), 283–292 (1978)CrossRef G. Batley, Y. Farrar, Irradiation techniques for the release of bound heavy metals in natural waters and blood. Anal. Chim. Acta 99(2), 283–292 (1978)CrossRef
15.
go back to reference P. Zhang, H.H. Hahn, E. Hoffmann, Different behavior of iron (III) and aluminum (III) salts to coagulate silica particle suspension. Acta Hydrochim. Hydrobiol. 31(2), 145–151 (2003)CrossRef P. Zhang, H.H. Hahn, E. Hoffmann, Different behavior of iron (III) and aluminum (III) salts to coagulate silica particle suspension. Acta Hydrochim. Hydrobiol. 31(2), 145–151 (2003)CrossRef
16.
go back to reference V. Srivastava, C. Weng, V. Singh, Y. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J. Chem. Eng. Data 56(4), 1414–1422 (2011)CrossRef V. Srivastava, C. Weng, V. Singh, Y. Sharma, Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J. Chem. Eng. Data 56(4), 1414–1422 (2011)CrossRef
17.
go back to reference D. Zamboulis, E.N. Peleka, N.K. Lazaridis, K.A. Matis, Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biotechnol. 86(3), 335–344 (2011)CrossRef D. Zamboulis, E.N. Peleka, N.K. Lazaridis, K.A. Matis, Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biotechnol. 86(3), 335–344 (2011)CrossRef
18.
go back to reference J. Lee, S. Mahendra, P.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7), 3580–3590 (2010)CrossRef J. Lee, S. Mahendra, P.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7), 3580–3590 (2010)CrossRef
19.
go back to reference I. Ali, New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)CrossRef I. Ali, New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012)CrossRef
20.
go back to reference H. Pekey, D. Karakaş, M. Bakoglu, Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 49(9), 809–818 (2004)CrossRef H. Pekey, D. Karakaş, M. Bakoglu, Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar. Pollut. Bull. 49(9), 809–818 (2004)CrossRef
21.
go back to reference R. Verma, P. Dwivedi, Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 5(5) (2013) R. Verma, P. Dwivedi, Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 5(5) (2013)
22.
go back to reference B.Z. Marg, in Hazardous metals and minerals pollution in India: Sources, toxicity and management, (A position paper, Indian National Science Academy, New Delhi, 2011) B.Z. Marg, in Hazardous metals and minerals pollution in India: Sources, toxicity and management, (A position paper, Indian National Science Academy, New Delhi, 2011)
23.
go back to reference S.K. Agarwal, Heavy metal pollution (APH publishing, India, 2009) S.K. Agarwal, Heavy metal pollution (APH publishing, India, 2009)
24.
go back to reference A.K. Shukla, Toxicity of heavy metals in the water samples of North-Eastern coal field region of Chhattisgarh. Dermatitis 5(25), 20 (2014) A.K. Shukla, Toxicity of heavy metals in the water samples of North-Eastern coal field region of Chhattisgarh. Dermatitis 5(25), 20 (2014)
25.
go back to reference H. Hu, Q. Jin, P. Kavan, A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability 6(9), 5820–5838 (2014)CrossRef H. Hu, Q. Jin, P. Kavan, A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability 6(9), 5820–5838 (2014)CrossRef
26.
go back to reference H. Bradl, Heavy metals in the environment: Origin, interaction and remediation (Academic Press, 2005) H. Bradl, Heavy metals in the environment: Origin, interaction and remediation (Academic Press, 2005)
27.
go back to reference R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. (2011) R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. (2011)
28.
go back to reference N. Pourang, Heavy metal bioaccumulation in different tissues of two fish species with regards to their feeding habits and trophic levels. Environ. Monit. Assess. 35(3), 207–219 (1995)CrossRef N. Pourang, Heavy metal bioaccumulation in different tissues of two fish species with regards to their feeding habits and trophic levels. Environ. Monit. Assess. 35(3), 207–219 (1995)CrossRef
29.
go back to reference X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. (2012) X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol. (2012)
30.
go back to reference X. Wang, T. Sato, B. Xing, S. Tao, Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350(1), 28–37 (2005)CrossRef X. Wang, T. Sato, B. Xing, S. Tao, Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350(1), 28–37 (2005)CrossRef
31.
go back to reference L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68(1), 167–182 (2003)CrossRef L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68(1), 167–182 (2003)CrossRef
32.
go back to reference J. Pronczuk, M. Bruné, F. Gore, Children’s environmental health in developing countries. Encycl. Environ. Health. 601–610 (2011) J. Pronczuk, M. Bruné, F. Gore, Children’s environmental health in developing countries. Encycl. Environ. Health. 601–610 (2011)
33.
go back to reference S.R. Kanel, J.-M. Greneche, H. Choi, Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)CrossRef S.R. Kanel, J.-M. Greneche, H. Choi, Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)CrossRef
34.
go back to reference S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39(5), 1291–1298 (2005)CrossRef S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39(5), 1291–1298 (2005)CrossRef
35.
go back to reference W.H. Organization, Guidelines for drinking-water quality (World Health Organization, Geneva, 2011) 2011 W.H. Organization, Guidelines for drinking-water quality (World Health Organization, Geneva, 2011) 2011
36.
go back to reference (BIS) BOIS. Indian standard drinking water speciation. New Delhi 110002 (2012) (BIS) BOIS. Indian standard drinking water speciation. New Delhi 110002 (2012)
37.
go back to reference P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)CrossRef P. Smedley, D. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)CrossRef
38.
go back to reference T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1), 139–166 (2007)CrossRef T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1), 139–166 (2007)CrossRef
39.
go back to reference R.A. Goyer, Lead toxicity: current concerns. Environ. Health Perspect. 100, 177 (1993)CrossRef R.A. Goyer, Lead toxicity: current concerns. Environ. Health Perspect. 100, 177 (1993)CrossRef
40.
go back to reference H.E. Ratcliffe, G.M. Swanson, L.J. Fischer, Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health 49(3), 221–270 (1996)CrossRef H.E. Ratcliffe, G.M. Swanson, L.J. Fischer, Human exposure to mercury: a critical assessment of the evidence of adverse health effects. J. Toxicol. Environ. Health 49(3), 221–270 (1996)CrossRef
41.
go back to reference M. Castro-González, M. Méndez-Armenta, Heavy metals: implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26(3), 263–271 (2008)CrossRef M. Castro-González, M. Méndez-Armenta, Heavy metals: implications associated to fish consumption. Environ. Toxicol. Pharmacol. 26(3), 263–271 (2008)CrossRef
42.
go back to reference X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85(7), 1204–1209 (2011)CrossRef X. Lv, J. Xu, G. Jiang, X. Xu, Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85(7), 1204–1209 (2011)CrossRef
43.
go back to reference T. Liu, Z.-L. Wang, X. Yan, B. Zhang, Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem. Eng. J. 245, 34–40 (2014)CrossRef T. Liu, Z.-L. Wang, X. Yan, B. Zhang, Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem. Eng. J. 245, 34–40 (2014)CrossRef
44.
go back to reference F. Pizarro, M. Olivares, R. Uauy, P. Contreras, A. Rebelo, V. Gidi, Acute gastrointestinal effects of graded levels of copper in drinking water. Environ. Health Perspect. 107(2), 117 (1999)CrossRef F. Pizarro, M. Olivares, R. Uauy, P. Contreras, A. Rebelo, V. Gidi, Acute gastrointestinal effects of graded levels of copper in drinking water. Environ. Health Perspect. 107(2), 117 (1999)CrossRef
45.
go back to reference K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 18(3), 386–395 (2011)CrossRef K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 18(3), 386–395 (2011)CrossRef
46.
go back to reference M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)CrossRef M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211, 317–331 (2012)CrossRef
47.
go back to reference B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151(1), 19–29 (2009)CrossRef B. Pan, B. Pan, W. Zhang, L. Lv, Q. Zhang, S. Zheng, Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 151(1), 19–29 (2009)CrossRef
48.
go back to reference J. Ruparelia, S. Duttagupta, A. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1), 145–156 (2008)CrossRef J. Ruparelia, S. Duttagupta, A. Chatterjee, S. Mukherji, Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232(1), 145–156 (2008)CrossRef
49.
go back to reference Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan et al., Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3), 263–266 (2002)CrossRef Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan et al., Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357(3), 263–266 (2002)CrossRef
50.
go back to reference Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39(4), 605–609 (2005)CrossRef Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39(4), 605–609 (2005)CrossRef
51.
go back to reference J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009) J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009)
52.
go back to reference K. Pillay, E. Cukrowska, N. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166(2), 1067–1075 (2009)CrossRef K. Pillay, E. Cukrowska, N. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166(2), 1067–1075 (2009)CrossRef
53.
go back to reference K. Pyrzyńska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf., A 362(1), 102–109 (2010)CrossRef K. Pyrzyńska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf., A 362(1), 102–109 (2010)CrossRef
54.
go back to reference A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)CrossRef A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58(1), 49–52 (2007)CrossRef
55.
go back to reference S.A. Kosa, G. Al-Zhrani, M.A. Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181, 159–168 (2012)CrossRef S.A. Kosa, G. Al-Zhrani, M.A. Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem. Eng. J. 181, 159–168 (2012)CrossRef
56.
go back to reference G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45(24), 10454–10462 (2011)CrossRef G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 45(24), 10454–10462 (2011)CrossRef
57.
go back to reference W. Zhang, X. Shi, Y. Zhang, W. Gu, B. Li, Y. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A. 1(5), 1745–1753 (2013)CrossRef W. Zhang, X. Shi, Y. Zhang, W. Gu, B. Li, Y. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A. 1(5), 1745–1753 (2013)CrossRef
58.
go back to reference V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)CrossRef V. Chandra, J. Park, Y. Chun, J.W. Lee, I.-C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)CrossRef
59.
go back to reference S.-T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang et al., Folding/aggregation of graphene oxide and its application in Cu 2 + removal. J. Colloid Interface Sci. 351(1), 122–127 (2010)CrossRef S.-T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang et al., Folding/aggregation of graphene oxide and its application in Cu 2 + removal. J. Colloid Interface Sci. 351(1), 122–127 (2010)CrossRef
60.
go back to reference F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194–205 (2014)CrossRef F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194–205 (2014)CrossRef
61.
go back to reference J.E. Van Benschoten, B.E. Reed, M.R. Matsumoto, P. McGarvey, Metal removal by soil washing for an iron oxide coated sandy soil. Water Environ. Res. 66(2), 168–174 (1994)CrossRef J.E. Van Benschoten, B.E. Reed, M.R. Matsumoto, P. McGarvey, Metal removal by soil washing for an iron oxide coated sandy soil. Water Environ. Res. 66(2), 168–174 (1994)CrossRef
62.
go back to reference F. Zhang, Q. Jin, S.-W. Chan, Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys. 95(8), 4319–4326 (2004)CrossRef F. Zhang, Q. Jin, S.-W. Chan, Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys. 95(8), 4319–4326 (2004)CrossRef
63.
go back to reference A. Agrawal, K. Sahu, Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 137(2), 915–924 (2006)CrossRef A. Agrawal, K. Sahu, Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 137(2), 915–924 (2006)CrossRef
64.
go back to reference J.A. Coston, C.C. Fuller, J.A. Davis, Pb2+ and Zn2+ adsorption by a natural aluminum-and iron-bearing surface coating on an aquifer sand. Geochim. Cosmochim. Acta 59(17), 3535–3547 (1995)CrossRef J.A. Coston, C.C. Fuller, J.A. Davis, Pb2+ and Zn2+ adsorption by a natural aluminum-and iron-bearing surface coating on an aquifer sand. Geochim. Cosmochim. Acta 59(17), 3535–3547 (1995)CrossRef
65.
go back to reference A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861–1873 (1989)CrossRef A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861–1873 (1989)CrossRef
66.
go back to reference M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)CrossRef M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)CrossRef
67.
go back to reference S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34(12), 2564–2569 (2000)CrossRef S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34(12), 2564–2569 (2000)CrossRef
68.
go back to reference H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)CrossRef H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)CrossRef
69.
go back to reference X. Zhang, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res. 45(11), 3481–3488 (2011)CrossRef X. Zhang, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res. 45(11), 3481–3488 (2011)CrossRef
70.
go back to reference S.A. Kim, S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P.J. Shea, W.-H. Lee et al., Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013)CrossRef S.A. Kim, S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P.J. Shea, W.-H. Lee et al., Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013)CrossRef
71.
go back to reference Y. Su, A.S. Adeleye, Y. Huang, X. Sun, C. Dai, X. Zhou et al., Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 63, 102–111 (2014)CrossRef Y. Su, A.S. Adeleye, Y. Huang, X. Sun, C. Dai, X. Zhou et al., Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 63, 102–111 (2014)CrossRef
72.
go back to reference P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef
73.
go back to reference N.N. Nassar, Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1), 538–546 (2010)CrossRef N.N. Nassar, Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 184(1), 538–546 (2010)CrossRef
74.
go back to reference Z. Khayat Sarkar, F. Khayat Sarkar, Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent. Int. J. Nanosci. Nanotechnol. 9(2), 109–114 (2013) Z. Khayat Sarkar, F. Khayat Sarkar, Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent. Int. J. Nanosci. Nanotechnol. 9(2), 109–114 (2013)
75.
go back to reference L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3 O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 41(15), 4544–4551 (2012)CrossRef L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3 O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans. 41(15), 4544–4551 (2012)CrossRef
76.
go back to reference X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen et al., Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184, 132–140 (2012)CrossRef X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen et al., Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184, 132–140 (2012)CrossRef
77.
go back to reference J.-F. Liu, Zhao Z-s, Jiang G-b, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42(18), 6949–6954 (2008)CrossRef J.-F. Liu, Zhao Z-s, Jiang G-b, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42(18), 6949–6954 (2008)CrossRef
78.
go back to reference Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, P.R. Solanki, Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. J. Environ. Chem. Eng. 4(4), 4237–4247 (2016)CrossRef Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey, P.R. Solanki, Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. J. Environ. Chem. Eng. 4(4), 4237–4247 (2016)CrossRef
79.
go back to reference P.R. Grossl, D.L. Sparks, C.C. Ainsworth, Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ. Sci. Technol. 28(8), 1422–1429 (1994)CrossRef P.R. Grossl, D.L. Sparks, C.C. Ainsworth, Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ. Sci. Technol. 28(8), 1422–1429 (1994)CrossRef
80.
go back to reference Y.-H. Chen, F.-A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347(2), 277–281 (2010)CrossRef Y.-H. Chen, F.-A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347(2), 277–281 (2010)CrossRef
81.
go back to reference J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 39(18), 4528–4536 (2005)CrossRef J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 39(18), 4528–4536 (2005)CrossRef
82.
go back to reference J. Hu, G. Chen, I.M. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132(7), 709–715 (2006)CrossRef J. Hu, G. Chen, I.M. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132(7), 709–715 (2006)CrossRef
83.
go back to reference M.-S. Kim, K.-M. Hong, J.G. Chung, Removal of Cu (II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res. 37(14), 3524–3529 (2003)CrossRef M.-S. Kim, K.-M. Hong, J.G. Chung, Removal of Cu (II) from aqueous solutions by adsorption process with anatase-type titanium dioxide. Water Res. 37(14), 3524–3529 (2003)CrossRef
84.
go back to reference M.-S. Kim, J.G. Chung, A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions. J. Colloid Int. Sci. 233(1), 31–37 (2001)CrossRef M.-S. Kim, J.G. Chung, A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions. J. Colloid Int. Sci. 233(1), 31–37 (2001)CrossRef
85.
go back to reference P. Liang, T. Shi, J. Li, Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int. J. Environ. Anal. Chem. 84(4), 315–321 (2004)CrossRef P. Liang, T. Shi, J. Li, Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int. J. Environ. Anal. Chem. 84(4), 315–321 (2004)CrossRef
86.
go back to reference L. Skubal, N. Meshkov, T. Rajh, M. Thurnauer, Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol., A 148(1), 393–397 (2002)CrossRef L. Skubal, N. Meshkov, T. Rajh, M. Thurnauer, Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol., A 148(1), 393–397 (2002)CrossRef
87.
go back to reference S. Carrettin, P. Concepción, A. Corma, J.M. Lopez Nieto, V.F. Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43(19), 2538–2540 (2004)CrossRef S. Carrettin, P. Concepción, A. Corma, J.M. Lopez Nieto, V.F. Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43(19), 2538–2540 (2004)CrossRef
88.
go back to reference S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 − x nanoparticles. J. Appl. Phys. 87(3), 1318–1321 (2000)CrossRef S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 − x nanoparticles. J. Appl. Phys. 87(3), 1318–1321 (2000)CrossRef
89.
go back to reference Z. Wang, S. Saxena, V. Pischedda, H. Liermann, C. Zha, In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B. 64(1), 012102 (2001)CrossRef Z. Wang, S. Saxena, V. Pischedda, H. Liermann, C. Zha, In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys. Rev. B. 64(1), 012102 (2001)CrossRef
90.
go back to reference A. Corma, P. Atienzar, H. Garcia, J.-Y. Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3(6), 394–397 (2004)CrossRef A. Corma, P. Atienzar, H. Garcia, J.-Y. Chane-Ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3(6), 394–397 (2004)CrossRef
91.
go back to reference C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C. 114(21), 9865–9870 (2010)CrossRef C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C. 114(21), 9865–9870 (2010)CrossRef
92.
go back to reference S. Recillas, J. Colón, E. Casals, E. González, V. Puntes, A. Sánchez et al., Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J. Hazard. Mater. 184(1), 425–431 (2010)CrossRef S. Recillas, J. Colón, E. Casals, E. González, V. Puntes, A. Sánchez et al., Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J. Hazard. Mater. 184(1), 425–431 (2010)CrossRef
93.
go back to reference Z.-C. Di, J. Ding, X.-J. Peng, Y.-H. Li, Z.-K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62(5), 861–865 (2006)CrossRef Z.-C. Di, J. Ding, X.-J. Peng, Y.-H. Li, Z.-K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62(5), 861–865 (2006)CrossRef
94.
go back to reference M.J. Haron, F. Ab Rahim, A.H. Abdullah, M.Z. Hussein, A. Kassim, Sorption removal of arsenic by cerium-exchanged zeolite P. Mater. Sci. Eng., B 149(2), 204–208 (2008)CrossRef M.J. Haron, F. Ab Rahim, A.H. Abdullah, M.Z. Hussein, A. Kassim, Sorption removal of arsenic by cerium-exchanged zeolite P. Mater. Sci. Eng., B 149(2), 204–208 (2008)CrossRef
95.
go back to reference C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 8(10), 3785–3790 (2008)CrossRef C. Gao, W. Zhang, H. Li, L. Lang, Z. Xu, Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 8(10), 3785–3790 (2008)CrossRef
96.
go back to reference R. Koivula, J. Pakarinen, M. Sivenius, K. Sirola, R. Harjula, E. Paatero, Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material. Sep. Purif. Technol. 70(1), 53–57 (2009)CrossRef R. Koivula, J. Pakarinen, M. Sivenius, K. Sirola, R. Harjula, E. Paatero, Use of hydrometallurgical wastewater as a precursor for the synthesis of cryptomelane-type manganese dioxide ion exchange material. Sep. Purif. Technol. 70(1), 53–57 (2009)CrossRef
97.
go back to reference J. Pakarinen, R. Koivula, M. Laatikainen, K. Laatikainen, E. Paatero, R. Harjula, Nanoporous manganese oxides as environmental protective materials—Effect of Ca and Mg on metals sorption. J. Hazard. Mater. 180(1), 234–240 (2010)CrossRef J. Pakarinen, R. Koivula, M. Laatikainen, K. Laatikainen, E. Paatero, R. Harjula, Nanoporous manganese oxides as environmental protective materials—Effect of Ca and Mg on metals sorption. J. Hazard. Mater. 180(1), 234–240 (2010)CrossRef
98.
go back to reference J. Li, Y. Shi, Y. Cai, S. Mou, G. Jiang, Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/microsized alumina. Chem. Eng. J. 140(1), 214–220 (2008) J. Li, Y. Shi, Y. Cai, S. Mou, G. Jiang, Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/microsized alumina. Chem. Eng. J. 140(1), 214–220 (2008)
99.
go back to reference M. Hiraide, J. Iwasawa, S. Hiramatsu, H. Kawaguchi, Use of surfactant aggregates formed on alumina for the preparation of chelating sorbents. Anal. Sci. 11(4), 611–615 (1995)CrossRef M. Hiraide, J. Iwasawa, S. Hiramatsu, H. Kawaguchi, Use of surfactant aggregates formed on alumina for the preparation of chelating sorbents. Anal. Sci. 11(4), 611–615 (1995)CrossRef
100.
go back to reference G. Chang, Z. Jiang, T. Peng, B. Hu, Preparation of high-specific-surface-area nanometer-sized alumina by sol-gel method and study on adsorption behaviors of transition metal ions on the alumina powder with ICP-AES. Acta Chim. Sin. Chin. Ed. 61(1), 100–103 (2003) G. Chang, Z. Jiang, T. Peng, B. Hu, Preparation of high-specific-surface-area nanometer-sized alumina by sol-gel method and study on adsorption behaviors of transition metal ions on the alumina powder with ICP-AES. Acta Chim. Sin. Chin. Ed. 61(1), 100–103 (2003)
101.
go back to reference S. Dadfarnia, A.H. Shabani, H.D. Shirie, Determination of lead in different samples by atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. Bull. Korean Chem. Soc. 23(4), 545–548 (2002)CrossRef S. Dadfarnia, A.H. Shabani, H.D. Shirie, Determination of lead in different samples by atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. Bull. Korean Chem. Soc. 23(4), 545–548 (2002)CrossRef
102.
go back to reference M. Fan, T. Boonfueng, Y. Xu, L. Axe, T.A. Tyson, Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J. Colloid Interface Sci. 281(1), 39–48 (2005)CrossRef M. Fan, T. Boonfueng, Y. Xu, L. Axe, T.A. Tyson, Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. J. Colloid Interface Sci. 281(1), 39–48 (2005)CrossRef
103.
go back to reference X. Pu, Z. Jiang, B. Hu, H. Wang, γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 19(8), 984–989 (2004)CrossRef X. Pu, Z. Jiang, B. Hu, H. Wang, γ-MPTMS modified nanometer-sized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu, Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 19(8), 984–989 (2004)CrossRef
104.
go back to reference A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J. Hazard. Mater. 181(1), 836–844 (2010)CrossRef A. Afkhami, M. Saber-Tehrani, H. Bagheri, Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. J. Hazard. Mater. 181(1), 836–844 (2010)CrossRef
105.
go back to reference M.-R. Huang, S.-J. Huang, X.-G. Li, Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions. J. Phys. Chem. C. 115(13), 5301–5315 (2011)CrossRef M.-R. Huang, S.-J. Huang, X.-G. Li, Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions. J. Phys. Chem. C. 115(13), 5301–5315 (2011)CrossRef
106.
go back to reference X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170(2), 381–394 (2011)CrossRef X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170(2), 381–394 (2011)CrossRef
107.
go back to reference D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang, I. Nurulla, Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. e-Polymers (2016) D. Chen, T. Awut, B. Liu, Y. Ma, T. Wang, I. Nurulla, Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. e-Polymers (2016)
108.
go back to reference S.-H. Huang, D.-H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163(1), 174–179 (2009)CrossRef S.-H. Huang, D.-H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 163(1), 174–179 (2009)CrossRef
109.
go back to reference G.-B. Cai, G.-X. Zhao, X.-K. Wang, S.-H. Yu, Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C. 114(30), 12948–12954 (2010)CrossRef G.-B. Cai, G.-X. Zhao, X.-K. Wang, S.-H. Yu, Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C. 114(30), 12948–12954 (2010)CrossRef
Metadata
Title
Role of Nanostructured Materials Toward Remediation of Heavy Metals/Metalloids
Authors
Yana Bagbi
Arvind Pandey
Pratima R. Solanki
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_3

Premium Partners