Skip to main content
Top

2018 | OriginalPaper | Chapter

Role of Nonlinear Dynamics in Accelerated Warming of Great Lakes

Authors : Sergey Kravtsov, Noriyuki Sugiyama, Paul Roebber

Published in: Advances in Nonlinear Geosciences

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest Lake Superior was the strongest, and that of the shallowest Lake Erie—the weakest of all lakes. We investigate the dynamics of accelerated lake warming in idealized coupled thermodynamic lake–ice–atmosphere models. These models are shown to exhibit, under identical seasonally varying forcing, multiple possible stable equilibrium cycles, or regimes, with different maximum summertime temperatures and varying degrees of wintertime ice cover. The simulated lake response to linear climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer’s lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in the models considered arises due to nonlinear dynamics rooted in the ice–albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ackerman, S., A. Heidinger, M. Foster, and B. Maddux. 2013. Satellite regional cloud climatology over the Great Lakes. Remote Sensing 5: 6223–6240.CrossRef Ackerman, S., A. Heidinger, M. Foster, and B. Maddux. 2013. Satellite regional cloud climatology over the Great Lakes. Remote Sensing 5: 6223–6240.CrossRef
go back to reference Arvola, L., G. George, D.M. Livingstone, M. Jarvinen, T. Blenckner, M.T. Dokulil, E. Jennings, C.N. Aonghusa, P. Ñoges, T. Noges, and G.A. Weyhenmeyer. 2010. The impact of the changing climate on the thermal characteristics of lakes. In The impact of climate change on european lakes. Aquatic ecology series, ed. G. George, 85–101. Netherlands: Springer. Arvola, L., G. George, D.M. Livingstone, M. Jarvinen, T. Blenckner, M.T. Dokulil, E. Jennings, C.N. Aonghusa, P. Ñoges, T. Noges, and G.A. Weyhenmeyer. 2010. The impact of the changing climate on the thermal characteristics of lakes. In The impact of climate change on european lakes. Aquatic ecology series, ed. G. George, 85–101. Netherlands: Springer.
go back to reference Assel, R. 1986. Fall and winter thermal structure of Lake Superior. Journal of Great Lakes Research 12 (4): 251–262.CrossRef Assel, R. 1986. Fall and winter thermal structure of Lake Superior. Journal of Great Lakes Research 12 (4): 251–262.CrossRef
go back to reference Austin, J., and J. Allen. 2011. Sensitivity of summer Lake Superior thermal structure to meteorological forcing. Limnology and Oceanography 56: 1141–1154.CrossRef Austin, J., and J. Allen. 2011. Sensitivity of summer Lake Superior thermal structure to meteorological forcing. Limnology and Oceanography 56: 1141–1154.CrossRef
go back to reference Austin, J.A., and S.M. Colman. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters 34: L06604.CrossRef Austin, J.A., and S.M. Colman. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters 34: L06604.CrossRef
go back to reference Bennington, V., M. Notaro, and K.D. Holman. 2014. Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. Journal of Climate 27: 2886–2911.CrossRef Bennington, V., M. Notaro, and K.D. Holman. 2014. Improving climate sensitivity of deep lakes within a regional climate model and its impact on simulated climate. Journal of Climate 27: 2886–2911.CrossRef
go back to reference Byrne, M.P., and P.S. O’Gorman. 2012. Land–ocean warming contrast over a wide range of climates: convective quasi-equlibrium theory and idealized simulations. Journal of Climate 26: 4000–4016.CrossRef Byrne, M.P., and P.S. O’Gorman. 2012. Land–ocean warming contrast over a wide range of climates: convective quasi-equlibrium theory and idealized simulations. Journal of Climate 26: 4000–4016.CrossRef
go back to reference Fink, G., M. Schmid, B. Wahl, T. Wolf, and A. Wuest. 2014. Heat flux modifications related to climate-induced warming of large European lakes. Water Resources Research 50: 2072–2085.CrossRef Fink, G., M. Schmid, B. Wahl, T. Wolf, and A. Wuest. 2014. Heat flux modifications related to climate-induced warming of large European lakes. Water Resources Research 50: 2072–2085.CrossRef
go back to reference Foster, M., and A. Heidinger. 2013. PATMOS-x: results from a diurnally corrected 30-yr satellite cloud climatology. Journal of Climate 26: 414–425.CrossRef Foster, M., and A. Heidinger. 2013. PATMOS-x: results from a diurnally corrected 30-yr satellite cloud climatology. Journal of Climate 26: 414–425.CrossRef
go back to reference Gerbush, M., D. Kristovich, and N. Laird. 2008. Mesoscale boundary layer and heat flux variations over pack ice-covered Lake Erie. Journal of Applied Meteorology and Climatology 47: 668–682.CrossRef Gerbush, M., D. Kristovich, and N. Laird. 2008. Mesoscale boundary layer and heat flux variations over pack ice-covered Lake Erie. Journal of Applied Meteorology and Climatology 47: 668–682.CrossRef
go back to reference Gronewold, A.D., E.J. Anderson, B. Lofgren, P.D. Blanken, J. Wang, J. Smith, T. Hunter, G. Lang, C.A. Stow, D. Beletsky, and J. Bratton. 2015. Impacts of extreme 2013–2014 winter conditions on Lake Michigan’s fall heat content, surface temperature, and evaporation. Geophysical Research Letters 42: 3364–3370.CrossRef Gronewold, A.D., E.J. Anderson, B. Lofgren, P.D. Blanken, J. Wang, J. Smith, T. Hunter, G. Lang, C.A. Stow, D. Beletsky, and J. Bratton. 2015. Impacts of extreme 2013–2014 winter conditions on Lake Michigan’s fall heat content, surface temperature, and evaporation. Geophysical Research Letters 42: 3364–3370.CrossRef
go back to reference Hampton, S.E., L.R. Izmest’eva, M.V. Moore, S.L. Katz, B. Dennis, and E.A. Silow. 2008. Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Global Change Biology 14 (8): 1947–1958. doi:10.1111/j.1365-2486.2008.01616.x.CrossRef Hampton, S.E., L.R. Izmest’eva, M.V. Moore, S.L. Katz, B. Dennis, and E.A. Silow. 2008. Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Global Change Biology 14 (8): 1947–1958. doi:10.​1111/​j.​1365-2486.​2008.​01616.​x.CrossRef
go back to reference Hanrahan, J.L., S. Kravtsov, and P.J. Roebber. 2010. Connecting past and present climate variability to the water levels of Lake Michigan and Huron. Geophysical Research Letters 37: L01701.CrossRef Hanrahan, J.L., S. Kravtsov, and P.J. Roebber. 2010. Connecting past and present climate variability to the water levels of Lake Michigan and Huron. Geophysical Research Letters 37: L01701.CrossRef
go back to reference Hostetler, S., and P.J. Bartlein. 1990. Simulation of lake evaporation with application to modeling lake-level variations at Harney-Malheur Lake, Oregon. Water Resources Research 26: 2603–2612. Hostetler, S., and P.J. Bartlein. 1990. Simulation of lake evaporation with application to modeling lake-level variations at Harney-Malheur Lake, Oregon. Water Resources Research 26: 2603–2612.
go back to reference Joshi, M.M., and J.M. Gregory. 2008. Dependence of the land–sea contrast in surface climate response on the nature of the forcing. Geophysical Research Letters 35: L24802.CrossRef Joshi, M.M., and J.M. Gregory. 2008. Dependence of the land–sea contrast in surface climate response on the nature of the forcing. Geophysical Research Letters 35: L24802.CrossRef
go back to reference Joshi, M.M., J.M. Gregory, M.J. Webb, D.M.H. Sexton, and T.C. John. 2008. Mechanism for the land/seawarming contrast exhibited by simulations of climate change. Climate Dynamics 30: 455–465.CrossRef Joshi, M.M., J.M. Gregory, M.J. Webb, D.M.H. Sexton, and T.C. John. 2008. Mechanism for the land/seawarming contrast exhibited by simulations of climate change. Climate Dynamics 30: 455–465.CrossRef
go back to reference Manabe, S., R.J. Stouffer, M.J. Spelman, and K. Bryan. 1991. Transit responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. Journal of Climate 4: 785–818.CrossRef Manabe, S., R.J. Stouffer, M.J. Spelman, and K. Bryan. 1991. Transit responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. Journal of Climate 4: 785–818.CrossRef
go back to reference Martynov, A., L. Sushama, and R. Laprise. 2010. Simulation of temperate freezing lakes by one- dimensional lake models: performance assessment for interactive coupling with regional climate models. Boreal Environment Research 15: 143–164. Martynov, A., L. Sushama, and R. Laprise. 2010. Simulation of temperate freezing lakes by one- dimensional lake models: performance assessment for interactive coupling with regional climate models. Boreal Environment Research 15: 143–164.
go back to reference McCormick, M.J., and G.A. Meadows. 1988. An intercomparison of four mixed layer models in a shallow inland sea. Journal of Geophysical Research 93: 6774–6788.CrossRef McCormick, M.J., and G.A. Meadows. 1988. An intercomparison of four mixed layer models in a shallow inland sea. Journal of Geophysical Research 93: 6774–6788.CrossRef
go back to reference Merryfield, W.J., M.M. Holland, and A.H. Monahan. 2008. Multiple equilibria and abrupt transitions in Arctic summer sea ice extent. In Arctic sea ice decline: observations, projections, mechanisms, and implications, ed. E.T. DeWeaver, C.M. Bitz, and L.-B. Tremblay, 151–174. doi:10.1029/180GM11. Merryfield, W.J., M.M. Holland, and A.H. Monahan. 2008. Multiple equilibria and abrupt transitions in Arctic summer sea ice extent. In Arctic sea ice decline: observations, projections, mechanisms, and implications, ed. E.T. DeWeaver, C.M. Bitz, and L.-B. Tremblay, 151–174. doi:10.​1029/​180GM11.
go back to reference O’Reilly, C.M., S. Sharma, D.K. Gray, S.E. Hampton, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781. doi:10.1002/2015GL066235.CrossRef O’Reilly, C.M., S. Sharma, D.K. Gray, S.E. Hampton, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42: 10773–10781. doi:10.​1002/​2015GL066235.CrossRef
go back to reference Piccolroaz, S., M. Toffolon, and B. Majone. 2015. The role of stratification on lakes’ thermal response: the case of Lake Superior. Water Resources Research 51: 7878–7894. doi:10.1002/2014WR016555.CrossRef Piccolroaz, S., M. Toffolon, and B. Majone. 2015. The role of stratification on lakes’ thermal response: the case of Lake Superior. Water Resources Research 51: 7878–7894. doi:10.​1002/​2014WR016555.CrossRef
go back to reference Schneider, P., and S.J. Hook. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters 37: L22405.CrossRef Schneider, P., and S.J. Hook. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters 37: L22405.CrossRef
go back to reference Schneider, P., S.J. Hook, R.G. Radocinski, G.K. Corlett, G.C. Hulley, S.G. Schladow, and T.E. Steissberg. 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters 36: L22402. doi:10.1029/2009GL040846.CrossRef Schneider, P., S.J. Hook, R.G. Radocinski, G.K. Corlett, G.C. Hulley, S.G. Schladow, and T.E. Steissberg. 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters 36: L22402. doi:10.​1029/​2009GL040846.CrossRef
go back to reference Semtner, A.J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography 6: 379–389.CrossRef Semtner, A.J. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography 6: 379–389.CrossRef
go back to reference Subin, Z.M., W.J. Riley, and D. Mironov. 2012. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems 4: M02001. doi:10.1029/2011MS000072.CrossRef Subin, Z.M., W.J. Riley, and D. Mironov. 2012. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems 4: M02001. doi:10.​1029/​2011MS000072.CrossRef
go back to reference Sutton, R.T., B. Dong, and M.G. Gregory. 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophysical Research Letters 34: L02701.CrossRef Sutton, R.T., B. Dong, and M.G. Gregory. 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophysical Research Letters 34: L02701.CrossRef
go back to reference Toffolon, M., S. Piccolroaz, B. Majone, A. Soja, F. Peeters, M. Schmid, and A. Wüest. 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography 59 (6): 2185–2202. Toffolon, M., S. Piccolroaz, B. Majone, A. Soja, F. Peeters, M. Schmid, and A. Wüest. 2014. Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography 59 (6): 2185–2202.
go back to reference Van Cleave, K., J.D. Lenters, J. Wang, and E.M. Verhamme. 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnology and Oceanography 59 (6): 1889–1898. doi:10.4319/lo.2014.59.6.1889.CrossRef Van Cleave, K., J.D. Lenters, J. Wang, and E.M. Verhamme. 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnology and Oceanography 59 (6): 1889–1898. doi:10.​4319/​lo.​2014.​59.​6.​1889.CrossRef
go back to reference Vavrus, S., R. Wynne, and J. Foley. 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnology and Oceanography 41: 822–831.CrossRef Vavrus, S., R. Wynne, and J. Foley. 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnology and Oceanography 41: 822–831.CrossRef
go back to reference Zhong, Y., M. Notaro, and S.J. Vavrus. 2016. Recent accelerated warming of the Laurentian Great Lakes: physical drivers. Limnology and Oceanography 61 (5): 1762–1786. doi:10.1002/lno.10331.CrossRef Zhong, Y., M. Notaro, and S.J. Vavrus. 2016. Recent accelerated warming of the Laurentian Great Lakes: physical drivers. Limnology and Oceanography 61 (5): 1762–1786. doi:10.​1002/​lno.​10331.CrossRef
Metadata
Title
Role of Nonlinear Dynamics in Accelerated Warming of Great Lakes
Authors
Sergey Kravtsov
Noriyuki Sugiyama
Paul Roebber
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-58895-7_15