Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 1/2019

16-11-2018

Room-temperature synthesis of Mn2+-doped cesium lead halide perovskite nanocrystals via a transformation doping method

Authors: Wei Yao, Dongmei Li, Hao Wang, Liu Yang

Published in: Journal of Materials Science: Materials in Electronics | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, Mn2+-doped cesium lead halide perovskite nanocrystals have attracted research interests. Here, we report a novel room-temperature transformation doping method for the synthesis of Mn2+-doped CsPbCl3 and CsPb(Br/Cl)3 nanocrystals. Innovatively, the transformation of Cs4PbX6 (X=Cl, Br) phase which has no excitation emission to CsPbX3 phase which has strong luminescence was used in this mechanism. Simply injecting MnCl2 precursor into Cs4PbX6 solution could result in the full transformation of Cs4PbX6 phase to CsPbX3 phase and Mn2+-doped CsPbCl3 or CsPb(Br/Cl)3 were obtained. The basic idea for the transformation doping method is that MnCl2 can not only drive the transformation of the two structures but also Mn2+ can substitute Pb2+. In this reaction, the concentration of Mn precursor is a key influence factor. Moreover, instead of the ligand of OA, the acetic acid was used in our method. Through the adjustment of the ligand in precursor, not just the photoluminescence quantum yields of as-prepared Mn2+-doped CsPbCl3 nanocrystals were improved from 7.8 to 32.6% (Mn2+-doped CsPb(Br/Cl)3 nanocrystals even could reach to 42.7%), the nanocrystals also retained outstanding stability. We propose a combination of structure transformation and ion doping as a perovskite doping mechanism. Our doping method is a novel strategy for lead halide perovskite nanocrystals doping project and it could provide more possibilities in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. De Roo et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016)CrossRef J. De Roo et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016)CrossRef
2.
go back to reference X.M. Li et al., Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 26(32), 5903–5912 (2016)CrossRef X.M. Li et al., Healing all-inorganic perovskite films via recyclable dissolution-recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Funct. Mater. 26(32), 5903–5912 (2016)CrossRef
3.
go back to reference J. Pan et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016)CrossRef J. Pan et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016)CrossRef
4.
go back to reference Y.S. Park et al., Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9(10), 10386–10393 (2015)CrossRef Y.S. Park et al., Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9(10), 10386–10393 (2015)CrossRef
5.
go back to reference Z.K. Tan et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)CrossRef Z.K. Tan et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)CrossRef
6.
go back to reference S.A. Veldhuis et al., Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)CrossRef S.A. Veldhuis et al., Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)CrossRef
7.
go back to reference H.C. Yoon et al., Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 8(28), 18189–18200 (2016)CrossRef H.C. Yoon et al., Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 8(28), 18189–18200 (2016)CrossRef
8.
go back to reference F. Zhang et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015)CrossRef F. Zhang et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015)CrossRef
9.
go back to reference X.J. Zhang et al., Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display. Chem. Mater. 28(23), 8493–8497 (2016)CrossRef X.J. Zhang et al., Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display. Chem. Mater. 28(23), 8493–8497 (2016)CrossRef
10.
go back to reference X.L. Zhang et al., All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 Composites. Adv. Funct. Mater. 26(25), 4595–4600 (2016)CrossRef X.L. Zhang et al., All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 Composites. Adv. Funct. Mater. 26(25), 4595–4600 (2016)CrossRef
11.
go back to reference X.Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated lonomer. Nano Lett. 16(2), 1415–1420 (2016)CrossRef X.Y. Zhang et al., Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated lonomer. Nano Lett. 16(2), 1415–1420 (2016)CrossRef
12.
go back to reference L. Protesescu et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015)CrossRef L. Protesescu et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015)CrossRef
13.
go back to reference S. Dastidar et al., High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16(6), 3563–3570 (2016)CrossRef S. Dastidar et al., High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16(6), 3563–3570 (2016)CrossRef
14.
go back to reference H. Huang et al., Water resistant CsPbX 3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7(9), 5699–5703 (2016)CrossRef H. Huang et al., Water resistant CsPbX 3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7(9), 5699–5703 (2016)CrossRef
15.
go back to reference P. Ramasamy et al., All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52(10), 2067–2070 (2016)CrossRef P. Ramasamy et al., All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52(10), 2067–2070 (2016)CrossRef
16.
go back to reference H.W. Liu et al., CsPbxMn1−xCl3 perovskite quantum dots with high Mn substitution ratio. Acs Nano 11(2), 2239–2247 (2017)CrossRef H.W. Liu et al., CsPbxMn1−xCl3 perovskite quantum dots with high Mn substitution ratio. Acs Nano 11(2), 2239–2247 (2017)CrossRef
17.
go back to reference W.Y. Liu et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138(45), 14954–14961 (2016)CrossRef W.Y. Liu et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138(45), 14954–14961 (2016)CrossRef
18.
go back to reference D. Parobek et al., Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16(12), 7376–7380 (2016)CrossRef D. Parobek et al., Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16(12), 7376–7380 (2016)CrossRef
19.
go back to reference M.I. Saidaminov et al., Pure Cs4PbBr6: highly luminescent zero dimensional perovskite solids. ACS Energy Lett. 1(4), 840–845 (2016)CrossRef M.I. Saidaminov et al., Pure Cs4PbBr6: highly luminescent zero dimensional perovskite solids. ACS Energy Lett. 1(4), 840–845 (2016)CrossRef
20.
go back to reference D.Q. Chen et al., Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 4(45), 10646–10653 (2016)CrossRef D.Q. Chen et al., Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C 4(45), 10646–10653 (2016)CrossRef
21.
go back to reference Q.A. Akkerman et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924–1930 (2017)CrossRef Q.A. Akkerman et al., Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924–1930 (2017)CrossRef
22.
go back to reference L. Yang et al., Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. J. Nanopart. Res. 19(7), 13 (2017)CrossRef L. Yang et al., Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets. J. Nanopart. Res. 19(7), 13 (2017)CrossRef
23.
go back to reference F. Palazon et al., Changing the dimensionality of cesium lead bromide nanocrystals by reversible postsynthesis transformations with amines. Chem. Mater. 29(10), 4167–4171 (2017)CrossRef F. Palazon et al., Changing the dimensionality of cesium lead bromide nanocrystals by reversible postsynthesis transformations with amines. Chem. Mater. 29(10), 4167–4171 (2017)CrossRef
24.
go back to reference L.F. Lv et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8(28), 13589–13596 (2016)CrossRef L.F. Lv et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8(28), 13589–13596 (2016)CrossRef
25.
go back to reference T. Udayabhaskararao et al., A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30(1), 84–93 (2018)CrossRef T. Udayabhaskararao et al., A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30(1), 84–93 (2018)CrossRef
26.
go back to reference Z.K. Liu et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 Nanocrystals. J. Am. Chem. Soc. 139(15), 5309–5312 (2017)CrossRef Z.K. Liu et al., Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 Nanocrystals. J. Am. Chem. Soc. 139(15), 5309–5312 (2017)CrossRef
27.
go back to reference Z. Cheng, J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10), 2646–2662 (2010)CrossRef Z. Cheng, J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10), 2646–2662 (2010)CrossRef
28.
go back to reference M.C. Weidman et al., Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. Acs Nano 10(8), 7830–7839 (2016)CrossRef M.C. Weidman et al., Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. Acs Nano 10(8), 7830–7839 (2016)CrossRef
29.
go back to reference J. Song et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016)CrossRef J. Song et al., Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28(24), 4861–4869 (2016)CrossRef
30.
go back to reference D. Magana et al., Switching-on superparamagnetism in Mn/CdSe quantum dots. J. Am. Chem. Soc. 128(9), 2931–2939 (2006)CrossRef D. Magana et al., Switching-on superparamagnetism in Mn/CdSe quantum dots. J. Am. Chem. Soc. 128(9), 2931–2939 (2006)CrossRef
31.
go back to reference C.A. Stowell et al., Synthesis and characterization of dilute magnetic semiconductor manganese-doped indium arsenide nanocrystals. Nano Lett. 3(10), 1441–1447 (2003)CrossRef C.A. Stowell et al., Synthesis and characterization of dilute magnetic semiconductor manganese-doped indium arsenide nanocrystals. Nano Lett. 3(10), 1441–1447 (2003)CrossRef
32.
go back to reference D.J. Norris et al., High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1(1), 3–7 (2001)CrossRef D.J. Norris et al., High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1(1), 3–7 (2001)CrossRef
33.
go back to reference S. Mahamuni, A.D. Lad, S. Patole, Photoluminescence properties of manganese-doped zinc selenide quantum dots. J. Phys. Chem. C 112(7), 2271–2277 (2008)CrossRef S. Mahamuni, A.D. Lad, S. Patole, Photoluminescence properties of manganese-doped zinc selenide quantum dots. J. Phys. Chem. C 112(7), 2271–2277 (2008)CrossRef
34.
go back to reference V.K. Ravi, G.B. Markad, A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Letters 1(4), 665–671 (2016)CrossRef V.K. Ravi, G.B. Markad, A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Letters 1(4), 665–671 (2016)CrossRef
35.
go back to reference T. Leijtens et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(20), 23 (2015) T. Leijtens et al., Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5(20), 23 (2015)
Metadata
Title
Room-temperature synthesis of Mn2+-doped cesium lead halide perovskite nanocrystals via a transformation doping method
Authors
Wei Yao
Dongmei Li
Hao Wang
Liu Yang
Publication date
16-11-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 1/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0279-3

Other articles of this Issue 1/2019

Journal of Materials Science: Materials in Electronics 1/2019 Go to the issue