Skip to main content
Top

2024 | OriginalPaper | Chapter

ROS Compatible Local Planner and Controller Based on Reinforcement Learning

Authors : Muharrem Küçükyılmaz, Erkan Uslu

Published in: Advances in Intelligent Manufacturing and Service System Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter introduces a new local planner for Autonomous Mobile Robots (AMR) based on Deep Q-Network (DQN), a reinforcement learning method. The planner uses sensor data, robot position, and global path to generate velocity commands for navigation. The study compares the DQN-based planner with traditional methods like Time Elastic Band (TEB) and Dynamic Window Approach (DWA) in various static and dynamic environments. The DQN planner shows promising results in navigating around obstacles and reaching goals efficiently, although it has limitations in handling local minima and parallel movements with obstacles. Future work includes expanding the action space and incorporating more complex neural networks for training.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fragapane, G., De Koster, R., Sgarbossa, F., Strandhagen, J.O.: Planning and control of autonomous mobile robots for intralogistics: literature review and research agenda. Eur. J. Oper. Res. 294, 405–426 (2021)MathSciNetCrossRefMATH Fragapane, G., De Koster, R., Sgarbossa, F., Strandhagen, J.O.: Planning and control of autonomous mobile robots for intralogistics: literature review and research agenda. Eur. J. Oper. Res. 294, 405–426 (2021)MathSciNetCrossRefMATH
2.
go back to reference Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110 (2006)CrossRef Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110 (2006)CrossRef
3.
go back to reference Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13, 251–263 (1997)CrossRef Betke, M., Gurvits, L.: Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13, 251–263 (1997)CrossRef
4.
go back to reference Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7, 376–382 (1991)CrossRef Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7, 376–382 (1991)CrossRef
5.
go back to reference Biswas, J., Veloso, M.: Depth camera based indoor mobile robot localization and navigation. In: 2012 IEEE International Conference on Robotics and Automation (2012) Biswas, J., Veloso, M.: Depth camera based indoor mobile robot localization and navigation. In: 2012 IEEE International Conference on Robotics and Automation (2012)
6.
go back to reference Ruan, X., Ren, D., Zhu, X., Huang, J.: Mobile robot navigation based on deep reinforcement learning. In: 2019 Chinese Control and Decision Conference (CCDC) (2019) Ruan, X., Ren, D., Zhu, X., Huang, J.: Mobile robot navigation based on deep reinforcement learning. In: 2019 Chinese Control and Decision Conference (CCDC) (2019)
7.
go back to reference Heimann, D., Hohenfeld, H., Wiebe, F., Kirchner, F., Quantum deep reinforcement learning for robot navigation tasks, arXiv preprint arXiv:2202.12180 (2022) Heimann, D., Hohenfeld, H., Wiebe, F., Kirchner, F., Quantum deep reinforcement learning for robot navigation tasks, arXiv preprint arXiv:​2202.​12180 (2022)
8.
go back to reference François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J., et al.: An introduction to deep reinforcement learning. Found. Trends® Mach. Learn. 11, 219–354 (2018)CrossRefMATH François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J., et al.: An introduction to deep reinforcement learning. Found. Trends® Mach. Learn. 11, 219–354 (2018)CrossRefMATH
10.
go back to reference Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)CrossRef Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)CrossRef
Metadata
Title
ROS Compatible Local Planner and Controller Based on Reinforcement Learning
Authors
Muharrem Küçükyılmaz
Erkan Uslu
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6062-0_37

Premium Partners