Skip to main content
Top

Running-time analysis of evolutionary programming based on Lebesgue measure of searching space

  • 19-11-2016
  • Original Article
Published in:

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There have been many studies on the runtime analysis of evolutionary algorithms in discrete optimization, and however, relatively few homologous results have been obtained on continuous optimization, such as evolutionary programming (EP). This paper presents an analysis of the running time (as approximated by the mean first hitting time) of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov process model. Given a constant variation, we analyze the running-time upper bound of special Gaussian mutation EP and Cauchy mutation EP, respectively. Our analysis shows that the upper bounds are impacted by individual number, problem dimension number, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the mean running time of the considered EPs can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial computation of an exponential and the given polynomial of n. In the end, we present a case study on sphere function, and the experiment validates the theoretical result in the case study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Title
Running-time analysis of evolutionary programming based on Lebesgue measure of searching space
Authors
Yushan Zhang
Han Huang
Zhiyong Lin
Zhifeng Hao
Guiwu Hu
Publication date
19-11-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 2/2018
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2651-7
This content is only visible if you are logged in and have the appropriate permissions.
This content is only visible if you are logged in and have the appropriate permissions.

Premium Partner

    Image Credits
    Neuer Inhalt/© ITandMEDIA, Nagarro GmbH/© Nagarro GmbH, AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH, USU GmbH/© USU GmbH