Skip to main content
Top
Published in: Journal of Materials Science 1/2018

05-09-2017 | Ceramics

Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization

Authors: Mustafa Aghazadeh, Mohammad Reza Ganjali

Published in: Journal of Materials Science | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sm3+-doped magnetite (Fe3O4) nanoparticles were synthesized through a one-pot facile electrochemical method. In this method, products were electrodeposited on a stainless steel (316L) cathode from an additive-free 0.005 M Fe(NO3)3/FeCl2/SmCl3 aqueous electrolyte. The structural characterizations through X-ray diffraction, field-emission electron microscopy, and energy-dispersive X-ray indicated that the deposited material has Sm3+-doped magnetite particles with average size of 20 nm. Magnetic analysis by VSM revealed the superparamagnetic nature of the prepared nanoparticles (Ms = 41.89 emu g−1, Mr = 0.12 emu g−1, and H Ci = 2.24 G). The supercapacitive capability evaluation of the prepared magnetite nanoparticles through cyclic voltammetry and galvanostat charge–discharge showed that these materials are capable to deliver specific capacitances as high as 207 F g−1 (at 0.5 A g−1) and 145 F g−1 (at 2 A g−1), and capacity retentions of 94.5 and 84.6% after 2000 cycling at 0.5 and 1 A g−1, respectively. The results proved the suitability of the electrosynthesized nanoparticles for use in supercapacitors. Furthermore, this work provides a facile electrochemical route for the synthesis of lanthanide-doped magnetite nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev Oct 45:5925–5950CrossRef Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev Oct 45:5925–5950CrossRef
2.
go back to reference Aghazadeh M, Ahmadi R, Gharailou D, Ganjali MR, Norouzi P (2016) A facile route to preparation of Co3O4 nanoplates and investigation of their charge storage ability as electrode material for supercapacitors. J Mater Sci Mater Electron 27:8623–8632CrossRef Aghazadeh M, Ahmadi R, Gharailou D, Ganjali MR, Norouzi P (2016) A facile route to preparation of Co3O4 nanoplates and investigation of their charge storage ability as electrode material for supercapacitors. J Mater Sci Mater Electron 27:8623–8632CrossRef
3.
go back to reference Aghazadeh M (2012) Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem 42:89–94CrossRef Aghazadeh M (2012) Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem 42:89–94CrossRef
4.
go back to reference Aghazadeh M, Rashidy A, Norouzi P (2016) High performance pseudocapacitor electrode material fabricated by pulse electrodeposited Co3O4 nanostructure. Int J Electrochem Sci 11:11016–11027CrossRef Aghazadeh M, Rashidy A, Norouzi P (2016) High performance pseudocapacitor electrode material fabricated by pulse electrodeposited Co3O4 nanostructure. Int J Electrochem Sci 11:11016–11027CrossRef
5.
go back to reference Peng S, ling L, Fan W, Rao Z, Bai W, Xu JX (2017) Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J Mater Sci 52:1930–1942. doi:10.1007/s10853-016-0482-7 CrossRef Peng S, ling L, Fan W, Rao Z, Bai W, Xu JX (2017) Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. J Mater Sci 52:1930–1942. doi:10.​1007/​s10853-016-0482-7 CrossRef
7.
go back to reference Aghazadeh M, Rashidi A, Ganjali MR (2016) Nickel oxide nano-rods/plates as high performanceelectrode materials for supercapacitors. Electrosynthesis and evolution of charge storage ability, Int J Electrochem Sci 11(11002):11015 Aghazadeh M, Rashidi A, Ganjali MR (2016) Nickel oxide nano-rods/plates as high performanceelectrode materials for supercapacitors. Electrosynthesis and evolution of charge storage ability, Int J Electrochem Sci 11(11002):11015
8.
go back to reference Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716. doi:10.1007/s10853-012-6929-6 CrossRef Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716. doi:10.​1007/​s10853-012-6929-6 CrossRef
9.
go back to reference Barani A, Aghazadeh M, Ganjali MR, Sabour B, Barmi AAM, Dalvand S (2014) Nanostructured nickel oxide ultrafine nanoparticles: synthesis, characterization, and supercapacitive behavior. Mater Sci Semiconduct Process 23:85–92CrossRef Barani A, Aghazadeh M, Ganjali MR, Sabour B, Barmi AAM, Dalvand S (2014) Nanostructured nickel oxide ultrafine nanoparticles: synthesis, characterization, and supercapacitive behavior. Mater Sci Semiconduct Process 23:85–92CrossRef
10.
go back to reference Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712. doi:10.1007/s10853-013-7471-x CrossRef Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712. doi:10.​1007/​s10853-013-7471-x CrossRef
11.
go back to reference Deng D, Chen N, Xiao X, Du S, Wan Y (2017) Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23:121–129CrossRef Deng D, Chen N, Xiao X, Du S, Wan Y (2017) Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23:121–129CrossRef
12.
go back to reference Poonguzhali R, Shanmugam N, Gobi R, Senthilkumar A, Viruthagiri G, Kannadasan N (2015) Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals. J Power Sources 293:790–798CrossRef Poonguzhali R, Shanmugam N, Gobi R, Senthilkumar A, Viruthagiri G, Kannadasan N (2015) Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals. J Power Sources 293:790–798CrossRef
13.
go back to reference Aghazadeh M, Bahrami-Samani A, Gharailou D, Maragheh MG, Ganjali MR (2016) Mn3O4 nanorods with secondary plate-like nanostructures; preparation, characterization and application as high performance electrode material in supercapacitors. J Mater Sci Mater Electron 27:11192–11200CrossRef Aghazadeh M, Bahrami-Samani A, Gharailou D, Maragheh MG, Ganjali MR (2016) Mn3O4 nanorods with secondary plate-like nanostructures; preparation, characterization and application as high performance electrode material in supercapacitors. J Mater Sci Mater Electron 27:11192–11200CrossRef
14.
go back to reference Aghazadeh M, Ganjali MR, Norouzi P (2016) Electrochemical preparation and supercapacitive performance of α-MnO2 nanospheres with secondary wall-like structures. J Mater Sci Mater Electron 27:7707–7714CrossRef Aghazadeh M, Ganjali MR, Norouzi P (2016) Electrochemical preparation and supercapacitive performance of α-MnO2 nanospheres with secondary wall-like structures. J Mater Sci Mater Electron 27:7707–7714CrossRef
15.
go back to reference Tizfahm J, Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2016) Electrochemical preparation and evaluation of the supercapacitive performance of MnO2 nanoworms. Mater Lett 167:153–156CrossRef Tizfahm J, Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2016) Electrochemical preparation and evaluation of the supercapacitive performance of MnO2 nanoworms. Mater Lett 167:153–156CrossRef
16.
17.
go back to reference Aghazadeh M, Asadi M, Maragheh MG, Ganjali MR, Norouzi P (2016) Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl Surf Sci 364:726–731CrossRef Aghazadeh M, Asadi M, Maragheh MG, Ganjali MR, Norouzi P (2016) Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl Surf Sci 364:726–731CrossRef
18.
go back to reference Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F (2016) Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl Surf Sci 364:141–147CrossRef Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P, Faridbod F (2016) Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl Surf Sci 364:141–147CrossRef
19.
go back to reference Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2016) One-step electrochemical preparation and characterization of nanostructured hydrohausmannite as electrode material for supercapacitors. RSC Adv 6:10442–10449CrossRef Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2016) One-step electrochemical preparation and characterization of nanostructured hydrohausmannite as electrode material for supercapacitors. RSC Adv 6:10442–10449CrossRef
21.
go back to reference Aghazadeh M, Malek Barmi AA, Gharailou D, Peyrovi MH, Sabour B, Najafi F (2013) Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl Surf Sci 283:871–875CrossRef Aghazadeh M, Malek Barmi AA, Gharailou D, Peyrovi MH, Sabour B, Najafi F (2013) Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl Surf Sci 283:871–875CrossRef
22.
go back to reference Jeong GH, Lee HM, Lee H, Kim CK, Piao Y, Lee JH, Kim JH, Kim SW (2014) One-pot synthesis of thin Co(OH)2 nanosheets on graphene and their high activity as a capacitor electrode. RSC Adv 4:51619–51623CrossRef Jeong GH, Lee HM, Lee H, Kim CK, Piao Y, Lee JH, Kim JH, Kim SW (2014) One-pot synthesis of thin Co(OH)2 nanosheets on graphene and their high activity as a capacitor electrode. RSC Adv 4:51619–51623CrossRef
23.
go back to reference Aghazadeh M, Dalvand S (2014) Large-scale and facile electrochemical preparation of β-Co (OH) 2 nanocapsules and investigation of their supercapacitive performance. J Electrochem Soc 161:D18–D25CrossRef Aghazadeh M, Dalvand S (2014) Large-scale and facile electrochemical preparation of β-Co (OH) 2 nanocapsules and investigation of their supercapacitive performance. J Electrochem Soc 161:D18–D25CrossRef
24.
go back to reference Aghazadeh M, Dalvand S, Hosseinifard M (2014) Facile electrochemical synthesis of uniform β-Co (OH)2 nanoplates for high performance supercapacitors. Ceram Int 40:3485–3493CrossRef Aghazadeh M, Dalvand S, Hosseinifard M (2014) Facile electrochemical synthesis of uniform β-Co (OH)2 nanoplates for high performance supercapacitors. Ceram Int 40:3485–3493CrossRef
25.
go back to reference Aghazadeh M, Mohammad Shiri H, Malek Barmi AA (2013) Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl Surf Sci 273:237–242CrossRef Aghazadeh M, Mohammad Shiri H, Malek Barmi AA (2013) Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors. Appl Surf Sci 273:237–242CrossRef
27.
go back to reference Talat Mehrabad J, Aghazadeh M, Maragheh MG, Ganjali MR (2016) α-Co(OH)2 nanoplates with excellent supercapacitive performance: electrochemical preparation and characterization. Mater Lett 184:223–224CrossRef Talat Mehrabad J, Aghazadeh M, Maragheh MG, Ganjali MR (2016) α-Co(OH)2 nanoplates with excellent supercapacitive performance: electrochemical preparation and characterization. Mater Lett 184:223–224CrossRef
28.
go back to reference Aghazadeh M, Ganjali MR, Maragheh MG (2017) Cobalt hydroxide nanoflakes prepared by saccharide-assisted cathodic electrochemical deposition as high performance supercapacitor electrode material. Int Electrochem Sci 12:5792–5803CrossRef Aghazadeh M, Ganjali MR, Maragheh MG (2017) Cobalt hydroxide nanoflakes prepared by saccharide-assisted cathodic electrochemical deposition as high performance supercapacitor electrode material. Int Electrochem Sci 12:5792–5803CrossRef
29.
go back to reference Gou J, Xie S, Liu Y, Liu C (2016) Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode. Electrochim Acta 210:915–924CrossRef Gou J, Xie S, Liu Y, Liu C (2016) Flower-like nickel-cobalt hydroxides converted from phosphites for high rate performance hybrid supercapacitor electrode. Electrochim Acta 210:915–924CrossRef
30.
go back to reference Tizfahm J, Safibonab B, Aghazadeh M, Majdabadi A, Sabour B, Dalvand S (2014) Supercapacitive behavior of Ni(OH)2 nanospheres prepared by a facile electrochemical method. Coll Surf A 443:544–551CrossRef Tizfahm J, Safibonab B, Aghazadeh M, Majdabadi A, Sabour B, Dalvand S (2014) Supercapacitive behavior of Ni(OH)2 nanospheres prepared by a facile electrochemical method. Coll Surf A 443:544–551CrossRef
31.
go back to reference Aghazadeh M, Nozad Golikand A, Ghaemi M (2011) Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int J Hydrogen Energy 36:8674–8679CrossRef Aghazadeh M, Nozad Golikand A, Ghaemi M (2011) Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int J Hydrogen Energy 36:8674–8679CrossRef
32.
go back to reference Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J Solid State Electrochem 18:1569–1584CrossRef Aghazadeh M, Ghaemi M, Sabour B, Dalvand S (2014) Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J Solid State Electrochem 18:1569–1584CrossRef
33.
go back to reference Aghazadeh M, Sabour B, Ganjali MR, Dalvand S (2014) Preparation, characterization and electrochemical behavior of porous sphere-like α-Ni(OH)2 nanostructures. Appl Surf Sci 313:581–584CrossRef Aghazadeh M, Sabour B, Ganjali MR, Dalvand S (2014) Preparation, characterization and electrochemical behavior of porous sphere-like α-Ni(OH)2 nanostructures. Appl Surf Sci 313:581–584CrossRef
34.
go back to reference Yadav AA (2016) Preparation and electrochemical properties of spray deposited α-Fe2O3 from nonaqueous medium for supercapacitor applications. J Mater Sci Mater Electron 27:12876–12883CrossRef Yadav AA (2016) Preparation and electrochemical properties of spray deposited α-Fe2O3 from nonaqueous medium for supercapacitor applications. J Mater Sci Mater Electron 27:12876–12883CrossRef
35.
36.
go back to reference Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. Mater Electron, J Mater Sci. doi:10.1007/s10854-017-7192-z Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. Mater Electron, J Mater Sci. doi:10.​1007/​s10854-017-7192-z
37.
go back to reference Mitchell E, Gupt RK, Mensah-Darkw K, Kumar D, Ramasamy K, Gupta BK, Kahol P (2014) Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J Chem 38:4344–4350CrossRef Mitchell E, Gupt RK, Mensah-Darkw K, Kumar D, Ramasamy K, Gupta BK, Kahol P (2014) Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J Chem 38:4344–4350CrossRef
38.
go back to reference Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Source 327:297–318CrossRef Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Source 327:297–318CrossRef
39.
go back to reference Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799CrossRef Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799CrossRef
40.
go back to reference Wang SY, Ho KC, Kuo SL, Wu NL (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153:A75–A80CrossRef Wang SY, Ho KC, Kuo SL, Wu NL (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153:A75–A80CrossRef
41.
go back to reference Nithya VD, Arul NS (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778CrossRef Nithya VD, Arul NS (2016) Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 4:10767–10778CrossRef
42.
go back to reference Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215CrossRef Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215CrossRef
43.
go back to reference Yang Y, Li J, Chen D, Zhao J (2016) A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery. ACS Appl Mater Interfaces 8:26730–26739CrossRef Yang Y, Li J, Chen D, Zhao J (2016) A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery. ACS Appl Mater Interfaces 8:26730–26739CrossRef
44.
go back to reference Chen S, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5CrossRef Chen S, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5CrossRef
45.
go back to reference Wu YZ, Chen M, Yan XH, Ren J, Dai Y, Wang JJ, Pan JM, Wang YP, Cheng XN (2017) Hydrothermal synthesis of Fe3O4 nanorods/graphitic C3N4 composite with enhanced supercapacitive performance. Mater Lett 198:114–117CrossRef Wu YZ, Chen M, Yan XH, Ren J, Dai Y, Wang JJ, Pan JM, Wang YP, Cheng XN (2017) Hydrothermal synthesis of Fe3O4 nanorods/graphitic C3N4 composite with enhanced supercapacitive performance. Mater Lett 198:114–117CrossRef
46.
go back to reference Fan H, Niu R, Duan J, Liu W, Shen W (2016) Fe3O4 @Carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl Mater Interfaces 8:19475–19483CrossRef Fan H, Niu R, Duan J, Liu W, Shen W (2016) Fe3O4 @Carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl Mater Interfaces 8:19475–19483CrossRef
47.
go back to reference Yang X, Kan J, Zhang F, Zhu M, Li Z (2017) Facile fabrication of Mn2+ doped magnetite microspheres as efficient electrode material for supercapacitors. J Inorg Org Polym Mater 27:542–551CrossRef Yang X, Kan J, Zhang F, Zhu M, Li Z (2017) Facile fabrication of Mn2+ doped magnetite microspheres as efficient electrode material for supercapacitors. J Inorg Org Polym Mater 27:542–551CrossRef
48.
go back to reference Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:27518–27525CrossRef Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:27518–27525CrossRef
49.
go back to reference Xia T, Xu X, Wang J, Xu C, Meng F, Shi Z, Lian J, Bassat JM (2015) Facile complex-coprecipitation synthesis of mesoporous Fe3O4nanocages and their high lithium storage capacity as anode material for lithium-ion batteries. Electrochim Acta 160:114–122CrossRef Xia T, Xu X, Wang J, Xu C, Meng F, Shi Z, Lian J, Bassat JM (2015) Facile complex-coprecipitation synthesis of mesoporous Fe3O4nanocages and their high lithium storage capacity as anode material for lithium-ion batteries. Electrochim Acta 160:114–122CrossRef
50.
go back to reference Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef
51.
go back to reference Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6:5008–5014CrossRef Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6:5008–5014CrossRef
53.
go back to reference Karimzadeh I, Rezagholipour Dizaji H, Aghazadeh M (2016) Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater Res Express 3:095022CrossRef Karimzadeh I, Rezagholipour Dizaji H, Aghazadeh M (2016) Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater Res Express 3:095022CrossRef
54.
go back to reference Karimzadeh I, Aghazadeh M, Ganjali MR, Norouzi P, Shirvani-Arani S (2016) A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett 179:5–8CrossRef Karimzadeh I, Aghazadeh M, Ganjali MR, Norouzi P, Shirvani-Arani S (2016) A novel method for preparation of bare and poly (vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett 179:5–8CrossRef
55.
go back to reference Karimzadeh I, Aghazadeh M, Ganjali MR, Dourudi T (2017) Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED) method for biomedical applications. Curr Nanosci 13:167–174CrossRef Karimzadeh I, Aghazadeh M, Ganjali MR, Dourudi T (2017) Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED) method for biomedical applications. Curr Nanosci 13:167–174CrossRef
56.
go back to reference Karimzadeh I, Aghazadeh M, Dourudi T, Ganjali MR, Kolivand PH (2017) Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv Phys Chem 2017:7CrossRef Karimzadeh I, Aghazadeh M, Dourudi T, Ganjali MR, Kolivand PH (2017) Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv Phys Chem 2017:7CrossRef
57.
go back to reference Karimzadeh I, Aghazadeh M, Doroudi T, Ganjali MR, Kolivand PH, Gharailou D (2017) Superparamagnetic iron oxide nanoparticles modified with alanine and leucine for biomedical applications: development of a novel efficient preparation method. Curr Nanosci 13:274–280CrossRef Karimzadeh I, Aghazadeh M, Doroudi T, Ganjali MR, Kolivand PH, Gharailou D (2017) Superparamagnetic iron oxide nanoparticles modified with alanine and leucine for biomedical applications: development of a novel efficient preparation method. Curr Nanosci 13:274–280CrossRef
58.
go back to reference Beka LG, Li X, Liu W (2016) In situ grown cockscomb flower-like nanostructure of NiCo2S4 as high performance supercapacitors. J Mater Sci Mater Electron 27(10):10894–10904CrossRef Beka LG, Li X, Liu W (2016) In situ grown cockscomb flower-like nanostructure of NiCo2S4 as high performance supercapacitors. J Mater Sci Mater Electron 27(10):10894–10904CrossRef
59.
go back to reference Razmjoo P, Sabour B, Dalvand S, Aghazadeh M, Ganjali MR (2014) Porous Co3O4 nanoplates: electrochemical synthesis, characterization and investigation of supercapacitive performance. J Electrochem Soc 161:D293–D300CrossRef Razmjoo P, Sabour B, Dalvand S, Aghazadeh M, Ganjali MR (2014) Porous Co3O4 nanoplates: electrochemical synthesis, characterization and investigation of supercapacitive performance. J Electrochem Soc 161:D293–D300CrossRef
60.
go back to reference Aghazadeh M, Karimzadeh I, Ganjali MR, Behzad A (2017) Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. J Mater Sci Mater Electron. doi:10.1007/s10854-017-7757-x Aghazadeh M, Karimzadeh I, Ganjali MR, Behzad A (2017) Mn2+-doped Fe3O4 nanoparticles: a novel preparation method, structural, magnetic and electrochemical characterizations. J Mater Sci Mater Electron. doi:10.​1007/​s10854-017-7757-x
61.
go back to reference Aghazadeh M, Hosseinifard M (2013) Electrochemical preparation of ZrO2 nanopowder: impact of the pulse current on the crystal structure, composition and morphology. Ceram Int 39:4427–4435CrossRef Aghazadeh M, Hosseinifard M (2013) Electrochemical preparation of ZrO2 nanopowder: impact of the pulse current on the crystal structure, composition and morphology. Ceram Int 39:4427–4435CrossRef
62.
go back to reference Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2017) Preparation and characterization of Mn5O8 nanoparticles: a novel and facile pulse cathodic electrodeposition followed by heat-treatment. Inorg Nano Met Chem 27:1085–1089CrossRef Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P (2017) Preparation and characterization of Mn5O8 nanoparticles: a novel and facile pulse cathodic electrodeposition followed by heat-treatment. Inorg Nano Met Chem 27:1085–1089CrossRef
63.
go back to reference Aghazadeh M, Asadi M, Ganjali MR, Norouzi P, Sabour B, Emamalizadeh M (2017) Template-free preparation of vertically-aligned Mn3O4 nanorods as high supercapacitive performance electrode material. Thin Solid Films 634:24–32CrossRef Aghazadeh M, Asadi M, Ganjali MR, Norouzi P, Sabour B, Emamalizadeh M (2017) Template-free preparation of vertically-aligned Mn3O4 nanorods as high supercapacitive performance electrode material. Thin Solid Films 634:24–32CrossRef
64.
go back to reference Karimzadeh I, Aghazadeh M, Dourudi T, Ganjali MR, Gharailou D (2017) Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J Cluster Sci 28(3):1259–1271CrossRef Karimzadeh I, Aghazadeh M, Dourudi T, Ganjali MR, Gharailou D (2017) Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J Cluster Sci 28(3):1259–1271CrossRef
65.
go back to reference Aghazadeh M, Karimzadeh I, Ganjali MR, Mohebi Morad M (2017) A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater Lett 196:392–395CrossRef Aghazadeh M, Karimzadeh I, Ganjali MR, Mohebi Morad M (2017) A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater Lett 196:392–395CrossRef
66.
go back to reference Aghazadeh M, Karimzadeh I, Doroudi T, Ganjali MR, Kolivand PH, Gharailou D (2017) Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine. Appl Phys A 123:529–537CrossRef Aghazadeh M, Karimzadeh I, Doroudi T, Ganjali MR, Kolivand PH, Gharailou D (2017) Facile electrosynthesis and characterization of superparamagnetic nanoparticles coated with cysteine, glycine and glutamine. Appl Phys A 123:529–537CrossRef
67.
go back to reference Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Enhanced supercapacitive and magnetic performances of Ho3+ doped iron oxide nanoparticles prepared through a novel one-pot electro-synthesis method. Phys Status Solidi A. doi:10.1002/pssa.201700365 Aghazadeh M, Karimzadeh I, Ganjali MR (2017) Enhanced supercapacitive and magnetic performances of Ho3+ doped iron oxide nanoparticles prepared through a novel one-pot electro-synthesis method. Phys Status Solidi A. doi:10.​1002/​pssa.​201700365
68.
go back to reference De Silva CR, Smith S, Shim I, Pyun J, Gutu T, Jiao J, Zheng Z (2009) Lanthanide(III)-doped magnetite nanoparticles. J Am Chem Soc 131:6336–6337CrossRef De Silva CR, Smith S, Shim I, Pyun J, Gutu T, Jiao J, Zheng Z (2009) Lanthanide(III)-doped magnetite nanoparticles. J Am Chem Soc 131:6336–6337CrossRef
69.
go back to reference Parka JC, Yeo S, Kim M, Lee GT, Seo JH (2016) Synthesis and characterization of novel lanthanide-doped magnetite @Au core@ shell nanoparticles. Mater Lett 181:272–277CrossRef Parka JC, Yeo S, Kim M, Lee GT, Seo JH (2016) Synthesis and characterization of novel lanthanide-doped magnetite @Au core@ shell nanoparticles. Mater Lett 181:272–277CrossRef
70.
go back to reference Douglas FJ, MacLaren DA, Maclean N, Andreu I, Kettles FJ, Tun F, Berry CC, Castro M, Murrie M (2016) Gadolinium-doped magnetite nanoparticles from a single-source precursor. RSC Adv 6:74500–74505CrossRef Douglas FJ, MacLaren DA, Maclean N, Andreu I, Kettles FJ, Tun F, Berry CC, Castro M, Murrie M (2016) Gadolinium-doped magnetite nanoparticles from a single-source precursor. RSC Adv 6:74500–74505CrossRef
Metadata
Title
Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization
Authors
Mustafa Aghazadeh
Mohammad Reza Ganjali
Publication date
05-09-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1514-7

Other articles of this Issue 1/2018

Journal of Materials Science 1/2018 Go to the issue

Premium Partners