Skip to main content
Top
Published in:

01-12-2016 | Original Article

Sampling algorithms for weighted networks

Authors: Alireza Rezvanian, Mohammad Reza Meybodi

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many of the real-world networks, such as complex social networks, are intrinsically weighted networks, and therefore, traditional network models, such as binary network models, will result in losing much of the information contained in the edge weights of the networks and is not very realistic. In this paper, we propose that when the network model is chosen to be a weighted network, then the network measures such as degree centrality, clustering coefficient and eigenvector centrality must be redefined and new network sampling algorithms must be designed to take the weights of the edges of the network into consideration. In this paper, first, some network measures for weighted networks are presented and then, six network sampling algorithms are proposed for sampling weighted networks. The evaluation is done through simulations on real and synthetic weighted networks in terms of relative error, skew divergence, Pearson’s correlation coefficient and the Kolmogorov–Smirnov statistic. A number of experiments have been conducted to compare the sampling algorithms for weighted networks proposed in this paper with their counterparts for unweighted networks. The experiments show that existing sampling algorithms for unweighted networks will not produce good results as used for sampling weighted networks when compared to the algorithms proposed in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Blagus N, Šubelj L, Weiss G, Bajec M (2015) Sampling promotes community structure in social and information networks. Phys A 432:206–215CrossRef Blagus N, Šubelj L, Weiss G, Bajec M (2015) Sampling promotes community structure in social and information networks. Phys A 432:206–215CrossRef
go back to reference Dall’Asta L, Barrat A, Barthélemy M, Vespignani A, (2006) Vulnerability of weighted networks. J Stat Mech: Theory Exp 2006:P04006 Dall’Asta L, Barrat A, Barthélemy M, Vespignani A, (2006) Vulnerability of weighted networks. J Stat Mech: Theory Exp 2006:P04006
go back to reference Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Instit Hung Acad Sci 5:17–61MathSciNetMATH Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math Instit Hung Acad Sci 5:17–61MathSciNetMATH
go back to reference Frank O (2011) Survey sampling in networks. In: The SAGE Handbook of Social Network Analysis. SAGE publications, pp 370–388 Frank O (2011) Survey sampling in networks. In: The SAGE Handbook of Social Network Analysis. SAGE publications, pp 370–388
go back to reference Gao Q, Ding X, Pan F, Li W (2014) An improved sampling method of complex network. Int J Mod Phys C 25:1440007CrossRef Gao Q, Ding X, Pan F, Li W (2014) An improved sampling method of complex network. Int J Mod Phys C 25:1440007CrossRef
go back to reference García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644CrossRefMATH García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644CrossRefMATH
go back to reference Gile KJ, Handcock MS (2010) Respondent-driven sampling: an assessment of current methodology. Sociol Methodol 40:285–327CrossRef Gile KJ, Handcock MS (2010) Respondent-driven sampling: an assessment of current methodology. Sociol Methodol 40:285–327CrossRef
go back to reference Gjoka M, Kurant M, Butts CT, Markopoulou A (2010) Walking in Facebook: A case study of unbiased sampling of OSNs. Proceedings IEEE INFOCOM 2010. San Diego, CA, pp 1–9CrossRef Gjoka M, Kurant M, Butts CT, Markopoulou A (2010) Walking in Facebook: A case study of unbiased sampling of OSNs. Proceedings IEEE INFOCOM 2010. San Diego, CA, pp 1–9CrossRef
go back to reference Gjoka M, Butts CT, Kurant M, Markopoulou A (2011) Multigraph sampling of online social networks. IEEE J Sel Areas Commun 29:1893–1905CrossRef Gjoka M, Butts CT, Kurant M, Markopoulou A (2011) Multigraph sampling of online social networks. IEEE J Sel Areas Commun 29:1893–1905CrossRef
go back to reference Guns R, Rousseau R (2014) Recommending research collaborations using link prediction and random forest classifiers. Scientometrics 101:1461–1473CrossRef Guns R, Rousseau R (2014) Recommending research collaborations using link prediction and random forest classifiers. Scientometrics 101:1461–1473CrossRef
go back to reference Hall BH, Jaffe AB, Trajtenberg M (2001) The NBER patent citation data file: Lessons, insights and methodological tools. National Bureau of Economic Research Hall BH, Jaffe AB, Trajtenberg M (2001) The NBER patent citation data file: Lessons, insights and methodological tools. National Bureau of Economic Research
go back to reference Jalali ZS, Rezvanian A, Meybodi MR (2015) A two-phase sampling algorithm for social networks. In: 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI). IEEE, pp 1165–1169 Jalali ZS, Rezvanian A, Meybodi MR (2015) A two-phase sampling algorithm for social networks. In: 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI). IEEE, pp 1165–1169
go back to reference Jalali ZS, Rezvanian A, Meybodi MR (2016) Social network sampling using spanning trees. Int J Mod Phys C 27:1650052MathSciNetCrossRef Jalali ZS, Rezvanian A, Meybodi MR (2016) Social network sampling using spanning trees. Int J Mod Phys C 27:1650052MathSciNetCrossRef
go back to reference Jarukasemratana S, Murata T (2015) Edge weight method for community detection on mixed scale-free networks. Int J Artif Intell Tools 24:1–24CrossRef Jarukasemratana S, Murata T (2015) Edge weight method for community detection on mixed scale-free networks. Int J Artif Intell Tools 24:1–24CrossRef
go back to reference Jin L, Chen Y, Hui P, et al (2011) Albatross sampling: robust and effective hybrid vertex sampling for social graphs. In: Proceedings of the 3rd ACM international workshop on MobiArch. pp 11–16 Jin L, Chen Y, Hui P, et al (2011) Albatross sampling: robust and effective hybrid vertex sampling for social graphs. In: Proceedings of the 3rd ACM international workshop on MobiArch. pp 11–16
go back to reference Khomami MMD, Rezvanian A, Meybodi MR (2016) Distributed learning automata-based algorithm for community detection in complex networks. Int J Mod Phys B 30:1650042MathSciNetCrossRef Khomami MMD, Rezvanian A, Meybodi MR (2016) Distributed learning automata-based algorithm for community detection in complex networks. Int J Mod Phys B 30:1650042MathSciNetCrossRef
go back to reference Kurant M, Markopoulou A, Thiran P (2010) On the bias of BFS (Breadth First Search). In: 2010 22nd International Teletraffic Congress (ITC). pp 1–8 Kurant M, Markopoulou A, Thiran P (2010) On the bias of BFS (Breadth First Search). In: 2010 22nd International Teletraffic Congress (ITC). pp 1–8
go back to reference Kurant M, Markopoulou A, Thiran P (2011) Towards unbiased BFS sampling. IEEE J Sel Areas Commun 29:1799–1809CrossRef Kurant M, Markopoulou A, Thiran P (2011) Towards unbiased BFS sampling. IEEE J Sel Areas Commun 29:1799–1809CrossRef
go back to reference Kurant M, Gjoka M, Wang Y, et al (2012) Coarse-grained topology estimation via graph sampling. In: Proceedings of the 2012 ACM workshop on Workshop on online social networks. ACM, pp 25–30 Kurant M, Gjoka M, Wang Y, et al (2012) Coarse-grained topology estimation via graph sampling. In: Proceedings of the 2012 ACM workshop on Workshop on online social networks. ACM, pp 25–30
go back to reference Leskovec J, Faloutsos C (2006) Sampling from large graphs. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, Philadelphia, pp 631–636CrossRef Leskovec J, Faloutsos C (2006) Sampling from large graphs. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, Philadelphia, pp 631–636CrossRef
go back to reference Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1:1–41CrossRef Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1:1–41CrossRef
go back to reference Li W, Cai X (2004) Statistical analysis of airport network of China. Phys Rev E 69:46106CrossRef Li W, Cai X (2004) Statistical analysis of airport network of China. Phys Rev E 69:46106CrossRef
go back to reference Li M, Fan Y, Wu J, Di Z (2013a) Phase transitions in Ising model induced by weight redistribution on weighted regular networks. Int J Mod Phys B 27:1350146MathSciNetCrossRef Li M, Fan Y, Wu J, Di Z (2013a) Phase transitions in Ising model induced by weight redistribution on weighted regular networks. Int J Mod Phys B 27:1350146MathSciNetCrossRef
go back to reference Li P, Zhao Q, Wang H (2013b) A weighted local-world evolving network model based on the edge weights preferential selection. Int J Mod Phys B 27:1350039MathSciNetCrossRef Li P, Zhao Q, Wang H (2013b) A weighted local-world evolving network model based on the edge weights preferential selection. Int J Mod Phys B 27:1350039MathSciNetCrossRef
go back to reference Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58:1019–1031CrossRef Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inform Sci Technol 58:1019–1031CrossRef
go back to reference Lu J, Li D (2012) Sampling online social networks by random walk. Proceedings of the First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research. ACM, Beijing, pp 33–40CrossRef Lu J, Li D (2012) Sampling online social networks by random walk. Proceedings of the First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research. ACM, Beijing, pp 33–40CrossRef
go back to reference Lü L, Zhou T (2010) Link prediction in weighted networks: the role of weak ties. EPL (Europhysics Letters) 89:18001CrossRef Lü L, Zhou T (2010) Link prediction in weighted networks: the role of weak ties. EPL (Europhysics Letters) 89:18001CrossRef
go back to reference Lu Z, Sun X, Wen Y et al (2015) Algorithms and applications for community detection in weighted networks. IEEE Trans Parallel Distrib Syst 26:2916–2926CrossRef Lu Z, Sun X, Wen Y et al (2015) Algorithms and applications for community detection in weighted networks. IEEE Trans Parallel Distrib Syst 26:2916–2926CrossRef
go back to reference Luo P, Li Y, Wu C, Zhang G (2015) Toward cost-efficient sampling methods. Int J Mod Phys C 26:1550050CrossRef Luo P, Li Y, Wu C, Zhang G (2015) Toward cost-efficient sampling methods. Int J Mod Phys C 26:1550050CrossRef
go back to reference Maiya AS, Berger-Wolf TY (2010) Sampling community structure. In: Proceedings of the 19th international conference on World wide web. pp 701–710 Maiya AS, Berger-Wolf TY (2010) Sampling community structure. In: Proceedings of the 19th international conference on World wide web. pp 701–710
go back to reference Murai F, Ribeiro B, Towsley D, Wang P (2013) On set size distribution estimation and the characterization of large networks via sampling. IEEE J Sel Areas Commun 31:1017–1025CrossRef Murai F, Ribeiro B, Towsley D, Wang P (2013) On set size distribution estimation and the characterization of large networks via sampling. IEEE J Sel Areas Commun 31:1017–1025CrossRef
go back to reference Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics. International Biometric Soc 1441 I St, Nw, Suite 700, Washington, Dc 20005-2210, p 263 Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics. International Biometric Soc 1441 I St, Nw, Suite 700, Washington, Dc 20005-2210, p 263
go back to reference Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Social networks 31:155–163CrossRef Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Social networks 31:155–163CrossRef
go back to reference Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Social Networks 32:245–251CrossRef Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Social Networks 32:245–251CrossRef
go back to reference Pálovics R, Benczúr AA (2015) Temporal influence over the Last.fm social network—Springer. Social Network Analysis and Mining 5:1–12CrossRef Pálovics R, Benczúr AA (2015) Temporal influence over the Last.fm social network—Springer. Social Network Analysis and Mining 5:1–12CrossRef
go back to reference Papagelis M, Das G, Koudas N (2013) Sampling online social networks. IEEE Trans Knowl Data Eng 25:662–676CrossRef Papagelis M, Das G, Koudas N (2013) Sampling online social networks. IEEE Trans Knowl Data Eng 25:662–676CrossRef
go back to reference Park H, Moon S (2013) Sampling bias in user attribute estimation of OSNs. In: Proceedings of the 22nd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 183–184 Park H, Moon S (2013) Sampling bias in user attribute estimation of OSNs. In: Proceedings of the 22nd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, pp 183–184
go back to reference Piña-García CA, Gu D (2013) Spiraling Facebook: an alternative Metropolis-Hastings random walk using a spiral proposal distribution. Soc Netw Anal Min 3:1403–1415CrossRef Piña-García CA, Gu D (2013) Spiraling Facebook: an alternative Metropolis-Hastings random walk using a spiral proposal distribution. Soc Netw Anal Min 3:1403–1415CrossRef
go back to reference Rejaie R, Torkjazi M, Valafar M, Willinger W (2010) Sizing up online social networks. IEEE Netw 24:32–37CrossRef Rejaie R, Torkjazi M, Valafar M, Willinger W (2010) Sizing up online social networks. IEEE Netw 24:32–37CrossRef
go back to reference Rezvanian A, Meybodi MR (2015a) Finding maximum clique in stochastic graphs using distributed learning automata. Int J Uncertain, Fuzziness Knowl-Based Syst 23:1–31MathSciNetCrossRefMATH Rezvanian A, Meybodi MR (2015a) Finding maximum clique in stochastic graphs using distributed learning automata. Int J Uncertain, Fuzziness Knowl-Based Syst 23:1–31MathSciNetCrossRefMATH
go back to reference Rezvanian A, Meybodi MR (2015b) Sampling social networks using shortest paths. Phys A 424:254–268CrossRef Rezvanian A, Meybodi MR (2015b) Sampling social networks using shortest paths. Phys A 424:254–268CrossRef
go back to reference Rezvanian A, Rahmati M, Meybodi MR (2014) Sampling from complex networks using distributed learning automata. Phys A 396:224–234CrossRef Rezvanian A, Rahmati M, Meybodi MR (2014) Sampling from complex networks using distributed learning automata. Phys A 396:224–234CrossRef
go back to reference Ribeiro B, Towsley D (2010) Estimating and sampling graphs with multidimensional random walks. In: Proceedings of the 10th annual conference on Internet measurement. Melbourne, pp 390–403 Ribeiro B, Towsley D (2010) Estimating and sampling graphs with multidimensional random walks. In: Proceedings of the 10th annual conference on Internet measurement. Melbourne, pp 390–403
go back to reference Salehi M, Rabiee HR, Nabavi N, Pooya S (2011) Characterizing Twitter with Respondent-Driven Sampling. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (DASC). pp 1211–1217 Salehi M, Rabiee HR, Nabavi N, Pooya S (2011) Characterizing Twitter with Respondent-Driven Sampling. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing (DASC). pp 1211–1217
go back to reference Salehi M, Rabiee HR, Rajabi A (2012) Sampling from complex networks with high community structures. Chaos: an Interdisciplinary. J Nonlinear Sci 22:23126MathSciNetMATH Salehi M, Rabiee HR, Rajabi A (2012) Sampling from complex networks with high community structures. Chaos: an Interdisciplinary. J Nonlinear Sci 22:23126MathSciNetMATH
go back to reference Saramaki J, Onnela J-P, Kertész J, Kaski K (2005) Characterizing motifs in weighted complex networks. Science of Complex Networks From Biology to the Internet and WWW 776:108–117 Saramaki J, Onnela J-P, Kertész J, Kaski K (2005) Characterizing motifs in weighted complex networks. Science of Complex Networks From Biology to the Internet and WWW 776:108–117
go back to reference Saramäki J, Kivelä M, Onnela J-P et al (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75:27105CrossRef Saramäki J, Kivelä M, Onnela J-P et al (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75:27105CrossRef
go back to reference Sett N, Singh SR, Nandi S (2016) Influence of edge weight on node proximity based link prediction methods: an empirical analysis. Neurocomputing 172:71–83CrossRef Sett N, Singh SR, Nandi S (2016) Influence of edge weight on node proximity based link prediction methods: an empirical analysis. Neurocomputing 172:71–83CrossRef
go back to reference Thi DB, Ichise R, Le B (2014) Link Prediction in Social Networks Based on Local Weighted Paths. In: Future Data and Security Engineering. Springer, pp 151–163 Thi DB, Ichise R, Le B (2014) Link Prediction in Social Networks Based on Local Weighted Paths. In: Future Data and Security Engineering. Springer, pp 151–163
go back to reference Tong C, Lian Y, Niu J et al (2016) A novel green algorithm for sampling complex networks. J Netw Comput Appl 59:55–62CrossRef Tong C, Lian Y, Niu J et al (2016) A novel green algorithm for sampling complex networks. J Netw Comput Appl 59:55–62CrossRef
go back to reference Wang S-L, Tsai Y-C, Kao H-Y et al (2013) Shortest paths anonymization on weighted graphs. Int J Software Eng Knowl Eng 23:65–79CrossRef Wang S-L, Tsai Y-C, Kao H-Y et al (2013) Shortest paths anonymization on weighted graphs. Int J Software Eng Knowl Eng 23:65–79CrossRef
go back to reference Wang P, Zhao J, Lui J et al (2015) Unbiased characterization of node pairs over large graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 9:22 Wang P, Zhao J, Lui J et al (2015) Unbiased characterization of node pairs over large graphs. ACM Transactions on Knowledge Discovery from Data (TKDD) 9:22
go back to reference Yan X, Zhai L, Fan W (2013) C-index: a weighted network node centrality measure for collaboration competence. J Informetr 7:223–239CrossRef Yan X, Zhai L, Fan W (2013) C-index: a weighted network node centrality measure for collaboration competence. J Informetr 7:223–239CrossRef
go back to reference Yang C-L, Kung P-H, Chen C-A, Lin S-D (2013) Semantically sampling in heterogeneous social networks. In: Proceedings of the 22nd international conference on World Wide Web companion. pp 181–182 Yang C-L, Kung P-H, Chen C-A, Lin S-D (2013) Semantically sampling in heterogeneous social networks. In: Proceedings of the 22nd international conference on World Wide Web companion. pp 181–182
go back to reference Yarlagadda R, Pinnaka S, Etinkaya EKÇ (2015) A time-evolving weighted-graph analysis of global petroleum exchange. In: 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM). IEEE, pp 266–273 Yarlagadda R, Pinnaka S, Etinkaya EKÇ (2015) A time-evolving weighted-graph analysis of global petroleum exchange. In: 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM). IEEE, pp 266–273
go back to reference Yoon S, Lee S, Yook SH, Kim Y (2007) Statistical properties of sampled networks by random walks. Phys Rev E 75:46114CrossRef Yoon S, Lee S, Yook SH, Kim Y (2007) Statistical properties of sampled networks by random walks. Phys Rev E 75:46114CrossRef
go back to reference Yoon S-H, Kim K-N, Hong J et al (2015) A community-based sampling method using DPL for online social networks. Inf Sci 306:53–69CrossRef Yoon S-H, Kim K-N, Hong J et al (2015) A community-based sampling method using DPL for online social networks. Inf Sci 306:53–69CrossRef
go back to reference Zhao SX, Rousseau R, Fred YY (2011) h-Degree as a basic measure in weighted networks. J Informetr 5:668–677CrossRef Zhao SX, Rousseau R, Fred YY (2011) h-Degree as a basic measure in weighted networks. J Informetr 5:668–677CrossRef
go back to reference Zheng Y, Liu F, Gong Y-W (2014) Robustness in weighted networks with cluster structure. Mathemat Probl Eng 2014:1–8CrossRef Zheng Y, Liu F, Gong Y-W (2014) Robustness in weighted networks with cluster structure. Mathemat Probl Eng 2014:1–8CrossRef
go back to reference Zhu M, Cao T, Jiang X (2014) Using clustering coefficient to construct weighted networks for supervised link prediction. Social Network Analysis and Mining 4:1–8 Zhu M, Cao T, Jiang X (2014) Using clustering coefficient to construct weighted networks for supervised link prediction. Social Network Analysis and Mining 4:1–8
Metadata
Title
Sampling algorithms for weighted networks
Authors
Alireza Rezvanian
Mohammad Reza Meybodi
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0371-8

Premium Partner