Skip to main content
Top
Published in:

11-04-2022 | Original Article

Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems

Authors: Amir Seyyedabbasi, Farzad Kiani

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study proposes a new metaheuristic algorithm called sand cat swarm optimization (SCSO) which mimics the sand cat behavior that tries to survive in nature. These cats are able to detect low frequencies below 2 kHz and also have an incredible ability to dig for prey. The proposed algorithm, inspired by these two features, consists of two main phases (search and attack). This algorithm controls the transitions in the exploration and exploitation phases in a balanced manner and performed well in finding good solutions with fewer parameters and operations. It is carried out by finding the direction and speed of the appropriate movements with the defined adaptive strategy. The SCSO algorithm is tested with 20 well-known along with modern 10 complex test functions of CEC2019 benchmark functions and the obtained results are also compared with famous metaheuristic algorithms. According to the results, the algorithm that found the best solution in 63.3% of the test functions is SCSO. Moreover, the SCSO algorithm is applied to seven challenging engineering design problems such as welded beam design, tension/compression spring design, pressure vessel design, piston lever, speed reducer design, three-bar truss design, and cantilever beam design. The obtained results show that the SCSO performs successfully on convergence rate and in locating all or most of the local/global optima and outperforms other compared methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York, pp 5–39 Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, New York, pp 5–39
3.
go back to reference Tang C, Zhou Y, Tang Z et al (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell 51:5040–5066 Tang C, Zhou Y, Tang Z et al (2021) Teaching-learning-based pathfinder algorithm for function and engineering optimization problems. Appl Intell 51:5040–5066
4.
go back to reference Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82 Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
5.
go back to reference Kiani F, Seyyedabbasi A, Nematzadeh S (2021) Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection. Sens Rev 1–14 Kiani F, Seyyedabbasi A, Nematzadeh S (2021) Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection. Sens Rev 1–14
7.
go back to reference Kiani F, Seyyedabbasi A, Mahouti P (2021) Optimal characterization of a microwave transistor using grey wolf algorithms. Analog Integr Circ Sig Process 109:599–609 Kiani F, Seyyedabbasi A, Mahouti P (2021) Optimal characterization of a microwave transistor using grey wolf algorithms. Analog Integr Circ Sig Process 109:599–609
8.
go back to reference Can U, Alatas B (2015) Physics based metaheuristic algorithms for global optimization. Am J Inf Sci Comput Eng 1(3):94–106 Can U, Alatas B (2015) Physics based metaheuristic algorithms for global optimization. Am J Inf Sci Comput Eng 1(3):94–106
9.
go back to reference Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, OxfordMATH Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, OxfordMATH
10.
go back to reference Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
11.
go back to reference Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATH Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetMATH
12.
go back to reference Cai X, Zhao H, Shang Sh, Zhou Y et al (2021) An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application. Expert Syst Appl 121:1–13 Cai X, Zhao H, Shang Sh, Zhou Y et al (2021) An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application. Expert Syst Appl 121:1–13
13.
go back to reference Glover F (1990) Tabu search: a tutorial. Inf J Appl Anal 20(4):75–94 Glover F (1990) Tabu search: a tutorial. Inf J Appl Anal 20(4):75–94
14.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102 Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102
15.
go back to reference Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713 Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713
16.
go back to reference Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel metaheuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87(103249):1–28 Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel metaheuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87(103249):1–28
17.
go back to reference Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. Florida Institute of Technology, Technical Reports, pp 1–19 Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. Florida Institute of Technology, Technical Reports, pp 1–19
18.
go back to reference Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATH Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATH
19.
go back to reference Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111 Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111
20.
go back to reference Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184MathSciNet Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184MathSciNet
21.
go back to reference Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289MATH Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289MATH
23.
go back to reference Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromag Res 77:425–491 Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromag Res 77:425–491
24.
go back to reference Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140 Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140
25.
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, vol 4. IEEE, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, vol 4. IEEE, pp 1942–1948
26.
go back to reference Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39
27.
go back to reference Okdem S, Karaboga D (2009) Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors 9(2):909–921 Okdem S, Karaboga D (2009) Routing in wireless sensor networks using an ant colony optimization (ACO) router chip. Sensors 9(2):909–921
28.
go back to reference Seyyedabbasi A, Kiani F (2020) MAP-ACO: an efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems. Microprocess Microsyst 79(103325):1–9 Seyyedabbasi A, Kiani F (2020) MAP-ACO: an efficient protocol for multi-agent pathfinding in real-time WSN and decentralized IoT systems. Microprocess Microsyst 79(103325):1–9
29.
go back to reference Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. International fuzzy systems association world congress. Springer, Berlin, pp 789–798 Karaboga D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. International fuzzy systems association world congress. Springer, Berlin, pp 789–798
30.
go back to reference Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74 Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74
31.
go back to reference Yang XS (2009) Firefly algorithms for multimodal optimization. International symposium on stochastic algorithms. Springer, Berlin, pp 169–178 Yang XS (2009) Firefly algorithms for multimodal optimization. International symposium on stochastic algorithms. Springer, Berlin, pp 169–178
32.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
33.
go back to reference Seyyedabbasi A, Kiani F (2021) I-GWO and Ex-GWO: improved algorithms of the grey wolf optimizer to solve global optimization problems. Eng Comput 37:509–532 Seyyedabbasi A, Kiani F (2021) I-GWO and Ex-GWO: improved algorithms of the grey wolf optimizer to solve global optimization problems. Eng Comput 37:509–532
34.
go back to reference Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67 Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
35.
go back to reference Mirjalili S (2016) Dragonfly algorithm: a new metaheuristic optimization technique for solving single objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNet Mirjalili S (2016) Dragonfly algorithm: a new metaheuristic optimization technique for solving single objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073MathSciNet
36.
go back to reference Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214 Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
37.
go back to reference Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734 Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734
38.
go back to reference Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: IEEE Antennas and propagation society Internation symposium (APSURSI), pp 1–4 Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: IEEE Antennas and propagation society Internation symposium (APSURSI), pp 1–4
39.
go back to reference Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, Berlin, pp 854–858 Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, Berlin, pp 854–858
40.
go back to reference Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74 Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74
41.
go back to reference Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, lecture notes in computer science, vol 7445, pp 240–249 Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, lecture notes in computer science, vol 7445, pp 240–249
42.
go back to reference Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191 Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
44.
go back to reference Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872 Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872
45.
go back to reference Zhong L, Zhou Y, Luo Q, Zhong K (2021) Wind driven dragonfly algorithm for global optimization. Concurr Comput Pract Exp 33(6):e6054 Zhong L, Zhou Y, Luo Q, Zhong K (2021) Wind driven dragonfly algorithm for global optimization. Concurr Comput Pract Exp 33(6):e6054
46.
go back to reference Wang Z, Luo Q, Zhou Y (2021) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Eng Comput 37:3665–3698 Wang Z, Luo Q, Zhou Y (2021) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Eng Comput 37:3665–3698
47.
go back to reference Cole FR, Wilson DE (2015) Felis margarita (Carnivora: Felidae). Mamm Species 47(924):63–77 Cole FR, Wilson DE (2015) Felis margarita (Carnivora: Felidae). Mamm Species 47(924):63–77
48.
go back to reference Huang G, Rosowski J, Ravicz M, Peake W (2002) Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). J Comp Physiol A 188(9):663–681 Huang G, Rosowski J, Ravicz M, Peake W (2002) Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). J Comp Physiol A 188(9):663–681
49.
go back to reference Abbadi M (1989) Radiotelemetric observations on sand cats (Felis margarita) in the Arava Valley. Isr J Zool 36:155–156 Abbadi M (1989) Radiotelemetric observations on sand cats (Felis margarita) in the Arava Valley. Isr J Zool 36:155–156
50.
go back to reference Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, vol 635. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, pp 1–32 Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, vol 635. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, pp 1–32
51.
go back to reference Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, vol 29. Technical Report201411A. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, pp 625–640 Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization, vol 29. Technical Report201411A. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, pp 625–640
52.
go back to reference Price KV, Awad NH, Ali MZ, Suganthan PN (2018) The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University Price KV, Awad NH, Ali MZ, Suganthan PN (2018) The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University
53.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. Evolut Comput IEEE Trans 3:82–102 Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. Evolut Comput IEEE Trans 3:82–102
54.
go back to reference Seyyedabbasi A, Aliyev R, Kiani F, Gulle M, Basyildiz H, Shah M (2021) Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems. Knowl Based Syst 223:1–22 Seyyedabbasi A, Aliyev R, Kiani F, Gulle M, Basyildiz H, Shah M (2021) Hybrid algorithms based on combining reinforcement learning and metaheuristic methods to solve global optimization problems. Knowl Based Syst 223:1–22
55.
go back to reference Molga M, Smutnicki C (2005) Test functions for optimization needs Molga M, Smutnicki C (2005) Test functions for optimization needs
56.
go back to reference Jamil M, Yang X (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):1–47MATH Jamil M, Yang X (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):1–47MATH
57.
go back to reference Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971MathSciNetMATH Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971MathSciNetMATH
58.
go back to reference Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127 Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127
60.
go back to reference Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35 Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35
61.
go back to reference Bayzidi H, Talatahari S, Saraee M, Lamarche CP (2021) Social network search for solving engineering optimization problems. Comput Intell Neurosci Bayzidi H, Talatahari S, Saraee M, Lamarche CP (2021) Social network search for solving engineering optimization problems. Comput Intell Neurosci
62.
go back to reference Nowcki H (1974) Optimization in pre-contract ship design. In: Fujita Y, Lind K, Williams TJ (eds) Computer applications in the automation of shipyard operation and ship design, vol 2. North Holland, Elsevier, New York, pp 327–338 Nowcki H (1974) Optimization in pre-contract ship design. In: Fujita Y, Lind K, Williams TJ (eds) Computer applications in the automation of shipyard operation and ship design, vol 2. North Holland, Elsevier, New York, pp 327–338
63.
go back to reference Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846MathSciNetMATH Chickermane H, Gea HC (1996) Structural optimization using a new local approximation method. Int J Numer Methods Eng 39(5):829–846MathSciNetMATH
Metadata
Title
Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
Authors
Amir Seyyedabbasi
Farzad Kiani
Publication date
11-04-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01604-x