Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Scale-Covariant and Scale-Invariant Gaussian Derivative Networks

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a hybrid approach between scale-space theory and deep learning, where a deep learning architecture is constructed by coupling parameterized scale-space operations in cascade. By sharing the learnt parameters between multiple scale channels, and by using the transformation properties of the scale-space primitives under scaling transformations, the resulting network becomes provably scale covariant. By in addition performing max pooling over the multiple scale channels, a resulting network architecture for image classification also becomes provably scale invariant. We investigate the performance of such networks on the MNISTLargeScale dataset, which contains rescaled images from original MNIST over a factor of 4 concerning training data and over a factor of 16 concerning testing data. It is demonstrated that the resulting approach allows for scale generalization, enabling good performance for classifying patterns at scales not present in the training data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jansson, Y., Lindeberg, T.: Exploring the ability of CNNs to generalise to previously unseen scales over wide scale ranges. In: International Conference on Pattern Recognition (ICPR 2020), pp. 1181–1188 (2021) Jansson, Y., Lindeberg, T.: Exploring the ability of CNNs to generalise to previously unseen scales over wide scale ranges. In: International Conference on Pattern Recognition (ICPR 2020), pp. 1181–1188 (2021)
2.
go back to reference Lindeberg, T.: Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade. J. Math. Imaging Vis. 62, 120–148 (2020)MathSciNetCrossRef Lindeberg, T.: Provably scale-covariant continuous hierarchical networks based on scale-normalized differential expressions coupled in cascade. J. Math. Imaging Vis. 62, 120–148 (2020)MathSciNetCrossRef
3.
go back to reference Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 77–116 (1998) Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 77–116 (1998)
4.
go back to reference Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–154 (1998)CrossRef Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–154 (1998)CrossRef
5.
go back to reference Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)CrossRef Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)CrossRef
6.
go back to reference Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRef Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRef
7.
go back to reference Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded up robust features (SURF). CVIU 110, 346–359 (2008) Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: Speeded up robust features (SURF). CVIU 110, 346–359 (2008)
8.
go back to reference Lindeberg, T.: Image matching using generalized scale-space interest points. J. Math. Imaging Vis. 52, 3–36 (2015)MathSciNetCrossRef Lindeberg, T.: Image matching using generalized scale-space interest points. J. Math. Imaging Vis. 52, 3–36 (2015)MathSciNetCrossRef
9.
go back to reference Fawzi, A., Frossard, P.: Manitest: are classifiers really invariant? In: British Machine Vision Conference (BMVC 2015) (2015) Fawzi, A., Frossard, P.: Manitest: are classifiers really invariant? In: British Machine Vision Conference (BMVC 2015) (2015)
10.
go back to reference Singh, B., Davis, L.S.: An analysis of scale invariance in object detection – SNIP. In: Proceedings Computer Vision and Pattern Recognition (CVPR 2018), pp. 3578–3587 (2018) Singh, B., Davis, L.S.: An analysis of scale invariance in object detection – SNIP. In: Proceedings Computer Vision and Pattern Recognition (CVPR 2018), pp. 3578–3587 (2018)
11.
go back to reference Xu, Y., Xiao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. arXiv preprint arXiv:1411.6369 (2014) Xu, Y., Xiao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. arXiv preprint arXiv:​1411.​6369 (2014)
12.
go back to reference Kanazawa, A., Sharma, A., Jacobs, D.W.: Locally scale-invariant convolutional neural networks. arXiv preprint arXiv:1412.5104 (2014) Kanazawa, A., Sharma, A., Jacobs, D.W.: Locally scale-invariant convolutional neural networks. arXiv preprint arXiv:​1412.​5104 (2014)
13.
go back to reference Marcos, D., Kellenberger, B., Lobry, S., Tuia, D.: Scale equivariance in CNNs with vector fields. arXiv preprint arXiv:1807.11783 (2018) Marcos, D., Kellenberger, B., Lobry, S., Tuia, D.: Scale equivariance in CNNs with vector fields. arXiv preprint arXiv:​1807.​11783 (2018)
14.
go back to reference Ghosh, R., Gupta, A.K.: Scale steerable filters for locally scale-invariant convolutional neural networks. arXiv preprint arXiv:1906.03861 (2019) Ghosh, R., Gupta, A.K.: Scale steerable filters for locally scale-invariant convolutional neural networks. arXiv preprint arXiv:​1906.​03861 (2019)
15.
go back to reference Worrall, D., Welling, M.: Deep scale-spaces: equivariance over scale. In: Advances in Neural Information Processing Systems, pp. 7366–7378 (2019) Worrall, D., Welling, M.: Deep scale-spaces: equivariance over scale. In: Advances in Neural Information Processing Systems, pp. 7366–7378 (2019)
16.
go back to reference Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of Neural Information Processing Systems (NIPS 2015), pp. 2017–2025 (2015) Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of Neural Information Processing Systems (NIPS 2015), pp. 2017–2025 (2015)
17.
go back to reference Finnveden, L., Jansson, Y., Lindeberg, T.: Understanding when spatial transformer networks do not support invariance, and what to do about it. In: International Conference on Pattern Recognition (ICPR 2020), pp. 3427–3434 (2021) Finnveden, L., Jansson, Y., Lindeberg, T.: Understanding when spatial transformer networks do not support invariance, and what to do about it. In: International Conference on Pattern Recognition (ICPR 2020), pp. 3427–3434 (2021)
18.
go back to reference Roux, N.L., Bengio, Y.: Continuous neural networks. In: Artificial Intelligence and Statistics (AISTATS 2007), vol. 2, pp. 404–411 (2007) Roux, N.L., Bengio, Y.: Continuous neural networks. In: Artificial Intelligence and Statistics (AISTATS 2007), vol. 2, pp. 404–411 (2007)
19.
go back to reference Shocher, A., Feinstein, B., Haim, N., Irani, M.: From discrete to continuous convolution layers. arXiv preprint arXiv:2006.11120 (2020) Shocher, A., Feinstein, B., Haim, N., Irani, M.: From discrete to continuous convolution layers. arXiv preprint arXiv:​2006.​11120 (2020)
20.
go back to reference Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962) Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962)
22.
go back to reference Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE-TPAMI 14, 597–605 (1992)CrossRef Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE-TPAMI 14, 597–605 (1992)CrossRef
23.
go back to reference Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, New York (1993). 10.1007/978-1-4757-6465-9 Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer, New York (1993). 10.1007/978-1-4757-6465-9
24.
go back to reference Florack, L.M.J.: Image Structure. Springer, Dordrecht (1997). 10.1007/978-94-015-8845-4 Florack, L.M.J.: Image Structure. Springer, Dordrecht (1997). 10.1007/978-94-015-8845-4
25.
go back to reference ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Dordrecht (2003). 10.1007/978-1-4020-8840-7 ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Springer, Dordrecht (2003). 10.1007/978-1-4020-8840-7
26.
go back to reference Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)MathSciNetCrossRef Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)MathSciNetCrossRef
28.
go back to reference Jacobsen, J.J., van Gemert, J., Lou, Z., Smeulders, A.W.M.: Structured receptive fields in CNNs. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2016), pp. 2610–2619 (2016) Jacobsen, J.J., van Gemert, J., Lou, Z., Smeulders, A.W.M.: Structured receptive fields in CNNs. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2016), pp. 2610–2619 (2016)
29.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRef
30.
go back to reference Kingma, P.D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR 2015) (2015) Kingma, P.D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR 2015) (2015)
31.
go back to reference Lindeberg, T.: Scale-space for discrete signals. IEEE-TPAMI 12, 234–254 (1990)CrossRef Lindeberg, T.: Scale-space for discrete signals. IEEE-TPAMI 12, 234–254 (1990)CrossRef
32.
go back to reference Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. J. Math. Imaging Vis. 3, 349–376 (1993)CrossRef Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-level feature extraction. J. Math. Imaging Vis. 3, 349–376 (1993)CrossRef
33.
go back to reference Jansson, Y., Lindeberg, T.: MNISTLargeScaledataset. Zenodo (2020) Jansson, Y., Lindeberg, T.: MNISTLargeScaledataset. Zenodo (2020)
35.
go back to reference Li, Y., Tax, D.M.J., Loog, M.: Scale selection for supervised image segmentation. Image Vis. Comput. 30, 991–1003 (2012)CrossRef Li, Y., Tax, D.M.J., Loog, M.: Scale selection for supervised image segmentation. Image Vis. Comput. 30, 991–1003 (2012)CrossRef
Metadata
Title
Scale-Covariant and Scale-Invariant Gaussian Derivative Networks
Author
Tony Lindeberg
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-75549-2_1

Premium Partner