Skip to main content
Top

2024 | OriginalPaper | Chapter

18. Scaling Technique

Authors : Haukur Ingason, Ying Zhen Li, Anders Lönnermark

Published in: Tunnel Fire Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Physical scaling has been successfully applied throughout the development of fire safety science in the past several decades. It is a very powerful and cost-effective tool to obtain valuable information concerning, e.g. fire characteristics, smoke movement, smoke control, fire development and fire suppression. Typical scaling techniques that have been developed are summarized in this chapter to provide a theoretical benchmark and support for further development of more advanced scaling methods. Different scaling techniques are introduced although the focus is on the Froude scaling method which is the most common one used in fire safety science. Scaling of convective heat transfer, radiative heat transfer and heat conduction is investigated as well as the scaling of water sprays, response time of sprinklers, general combustible materials and wood pallets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Heskestad G (1975) Physical modeling of fire. J Fire Flammabil 6:253–273 Heskestad G (1975) Physical modeling of fire. J Fire Flammabil 6:253–273
2.
go back to reference Quintiere JG (1989) Scaling applications in fire research. Fire Saf J 15:3–29CrossRef Quintiere JG (1989) Scaling applications in fire research. Fire Saf J 15:3–29CrossRef
3.
go back to reference Ingason H (1997) In-rack fire plumes. In: Fire safety science – proceedings of the fifth international symposium. IAFSS, Melbourne, pp 333–344 Ingason H (1997) In-rack fire plumes. In: Fire safety science – proceedings of the fifth international symposium. IAFSS, Melbourne, pp 333–344
4.
go back to reference Perricone J, Wang M, Quintiere J (2007) Scale modeling of the transient thermal response of insulated structural frames exposed to fire. Fire Technol 44(2):113–136CrossRef Perricone J, Wang M, Quintiere J (2007) Scale modeling of the transient thermal response of insulated structural frames exposed to fire. Fire Technol 44(2):113–136CrossRef
5.
go back to reference Croce PA, Xin Y (2005) Scale modeling of quasi-steady wood crib fires in enclosures. Fire Saf J 40:245–266CrossRef Croce PA, Xin Y (2005) Scale modeling of quasi-steady wood crib fires in enclosures. Fire Saf J 40:245–266CrossRef
6.
go back to reference Li YZ, Hertzberg T (2013) Scaling of internal wall temperatures in enclosure fires. SP Technical Research Institute of Sweden, Borås Li YZ, Hertzberg T (2013) Scaling of internal wall temperatures in enclosure fires. SP Technical Research Institute of Sweden, Borås
7.
go back to reference Heskestad G (2002) Scaling the interaction of water sprays and flames. Fire Saf J 37:535–548CrossRef Heskestad G (2002) Scaling the interaction of water sprays and flames. Fire Saf J 37:535–548CrossRef
8.
go back to reference Heskestad G (2003) Extinction of gas and liquid pool fires with water spray. Fire Saf J 38:301–317CrossRef Heskestad G (2003) Extinction of gas and liquid pool fires with water spray. Fire Saf J 38:301–317CrossRef
9.
go back to reference Quintiere JG, Su GY, N. S (2007) Physical scaling for water mist fire suppression – a design application. Int J Eng Perform Based Fire Codes 9(2):87–108 Quintiere JG, Su GY, N. S (2007) Physical scaling for water mist fire suppression – a design application. Int J Eng Perform Based Fire Codes 9(2):87–108
10.
go back to reference Yu HZ, Zhou XY, Ditch BD (2008) Experimental validation of Froude-modeling-based physical scaling of water mist cooling of enclosure fires. In: 9th international symposium on fire safety science (poster). IAFSS, Karlsruhe, pp 553–564 Yu HZ, Zhou XY, Ditch BD (2008) Experimental validation of Froude-modeling-based physical scaling of water mist cooling of enclosure fires. In: 9th international symposium on fire safety science (poster). IAFSS, Karlsruhe, pp 553–564
11.
go back to reference Jayaweera TM, Yu HZ (2008) Scaling of fire cooling by water mist under low drop Reynolds number conditions. Fire Saf J 43:7CrossRef Jayaweera TM, Yu HZ (2008) Scaling of fire cooling by water mist under low drop Reynolds number conditions. Fire Saf J 43:7CrossRef
12.
go back to reference Yu HZ (2011) Physical scaling of water mist suppression of pool fires in enclosures. In: 10th international symposium on fire safety science, College Park Yu HZ (2011) Physical scaling of water mist suppression of pool fires in enclosures. In: 10th international symposium on fire safety science, College Park
13.
go back to reference Bettis RJ, Jagger SF, Wu Y (1993) Interim validation of tunnel fire consequence models: summary of phase 2 tests. Health and Safety Executive, Buxton Bettis RJ, Jagger SF, Wu Y (1993) Interim validation of tunnel fire consequence models: summary of phase 2 tests. Health and Safety Executive, Buxton
14.
go back to reference Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25:305–322CrossRef Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25:305–322CrossRef
15.
go back to reference Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity. Fire Saf J 35:363–390CrossRef Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems – a study of the critical velocity. Fire Saf J 35:363–390CrossRef
16.
go back to reference Ingason H, Li YZ (2010) Model scale tunnel fire tests with longitudinal ventilation. Fire Saf J 45:371–384CrossRef Ingason H, Li YZ (2010) Model scale tunnel fire tests with longitudinal ventilation. Fire Saf J 45:371–384CrossRef
17.
go back to reference Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. J Fire Prot Eng 21(1):5–36CrossRef Ingason H, Li YZ (2011) Model scale tunnel fire tests with point extraction ventilation. J Fire Prot Eng 21(1):5–36CrossRef
18.
go back to reference Ingason H (2007) Model scale railcar fire tests. Fire Saf J 42(4):271–282CrossRef Ingason H (2007) Model scale railcar fire tests. Fire Saf J 42(4):271–282CrossRef
19.
go back to reference Vauquelin O, Telle D (2005) Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Saf J 40:320–330CrossRef Vauquelin O, Telle D (2005) Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires. Fire Saf J 40:320–330CrossRef
20.
go back to reference Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45:361–370CrossRef Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45:361–370CrossRef
21.
go back to reference Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf J 46(4):204–210CrossRef Li YZ, Lei B, Ingason H (2011) The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf J 46(4):204–210CrossRef
22.
go back to reference Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Saf J 48:38–48CrossRef Li YZ, Ingason H (2012) The maximum ceiling gas temperature in a large tunnel fire. Fire Saf J 48:38–48CrossRef
23.
go back to reference Li YZ, Lei B, Ingason H (2010) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 49(2):435–449CrossRef Li YZ, Lei B, Ingason H (2010) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 49(2):435–449CrossRef
24.
go back to reference Yz L, Lei B, Ingason H (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. J Fire Prot Eng 22(2):101–131CrossRef Yz L, Lei B, Ingason H (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. J Fire Prot Eng 22(2):101–131CrossRef
25.
go back to reference Lönnermark A, Lindström J, Li YZ (2011) Model-scale metro car fire tests. SP Technical Research Institute of Sweden, Borås Lönnermark A, Lindström J, Li YZ (2011) Model-scale metro car fire tests. SP Technical Research Institute of Sweden, Borås
26.
go back to reference Lönnermark A, Lindström J, Li YZ, Claesson A, Kumm M, Ingason H (2012) Full-scale fire tests with a commuter train in a tunnel. SP Technical Research Institute of Sweden, Borås Lönnermark A, Lindström J, Li YZ, Claesson A, Kumm M, Ingason H (2012) Full-scale fire tests with a commuter train in a tunnel. SP Technical Research Institute of Sweden, Borås
27.
go back to reference Ingason H (2008) Model scale tunnel tests with water spray. Fire Saf J 43(7):512–528CrossRef Ingason H (2008) Model scale tunnel tests with water spray. Fire Saf J 43(7):512–528CrossRef
28.
go back to reference Li YZ, Ingason H (2013) Model scale tunnel fire tests with automatic sprinkler. Fire Saf J 61:298–313CrossRef Li YZ, Ingason H (2013) Model scale tunnel fire tests with automatic sprinkler. Fire Saf J 61:298–313CrossRef
29.
go back to reference Li YZ, Ingason H (2011) Model scale tunnel fire tests – automatic sprinklers. SP Report. SP Technical Research Institute of Sweden, Borås, p 31 Li YZ, Ingason H (2011) Model scale tunnel fire tests – automatic sprinklers. SP Report. SP Technical Research Institute of Sweden, Borås, p 31
30.
go back to reference Quintiere JG (2002) Fire behaviour in building compartments. In: Proceedings of the combustion institutes, pp 181–193 Quintiere JG (2002) Fire behaviour in building compartments. In: Proceedings of the combustion institutes, pp 181–193
31.
go back to reference Cheremisinoff N (1986) Encyclopedia of fluid mechanics, vol 3: Gas-liquid flows. Gulf Publishing Company, Houston Cheremisinoff N (1986) Encyclopedia of fluid mechanics, vol 3: Gas-liquid flows. Gulf Publishing Company, Houston
32.
go back to reference Schlichting H (1968) Boundary-layer theory. 6th edn. ISBN:07-055329-7 Schlichting H (1968) Boundary-layer theory. 6th edn. ISBN:07-055329-7
33.
go back to reference Dembele S, Wen JX, Sacadura JF (2000) Analysis of the two-flux model for predicting water spray transmittance in fire protection applications. J Heat Transf 122(1):183–186CrossRef Dembele S, Wen JX, Sacadura JF (2000) Analysis of the two-flux model for predicting water spray transmittance in fire protection applications. J Heat Transf 122(1):183–186CrossRef
34.
go back to reference Dombrowski N, Wolfsohn DL (1972) The atomization of water by swirl spray pressure nozzles. Trans Inst Chem Eng 50:259–269 Dombrowski N, Wolfsohn DL (1972) The atomization of water by swirl spray pressure nozzles. Trans Inst Chem Eng 50:259–269
35.
go back to reference Tewarson A (2002) Generation of heat and chemical compounds in fires. In: DiNenno PJ, Drysdale D, Beyler CL et al (eds) The SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Quincy, pp 3–82–83–161 Tewarson A (2002) Generation of heat and chemical compounds in fires. In: DiNenno PJ, Drysdale D, Beyler CL et al (eds) The SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Quincy, pp 3–82–83–161
36.
go back to reference Heskestad G (1988) Quantification of thermal responsiveness of automatic sprinklers including conduction effects. Fire Saf J 14:113–125CrossRef Heskestad G (1988) Quantification of thermal responsiveness of automatic sprinklers including conduction effects. Fire Saf J 14:113–125CrossRef
37.
go back to reference Ruffino P, Di Marzo M (2003) Temperature and volumetric fraction measurements in a hot gas laden with water droplets. J Heat Transf 125(2):356–364CrossRef Ruffino P, Di Marzo M (2003) Temperature and volumetric fraction measurements in a hot gas laden with water droplets. J Heat Transf 125(2):356–364CrossRef
38.
go back to reference Ruffino P, Di Marzo M (2002) The effect of evaporative cooling on the activation time of fire sprinklers. In: Paper presented at the Proceedings of the seventh international symposium on fire safety science Ruffino P, Di Marzo M (2002) The effect of evaporative cooling on the activation time of fire sprinklers. In: Paper presented at the Proceedings of the seventh international symposium on fire safety science
39.
go back to reference Gavelli F, Ruffino P, Anderson G, Di Marzo M (1999) Effect of minute water droplets on a simulated sprinkler link thermal response. NIST GCR 99-776. National Institute of Standards and Technology, Maryland Gavelli F, Ruffino P, Anderson G, Di Marzo M (1999) Effect of minute water droplets on a simulated sprinkler link thermal response. NIST GCR 99-776. National Institute of Standards and Technology, Maryland
40.
go back to reference Li YZ, Ingason H, Lönnermark A (2014) Fire development in different scales of train carriages. In: Paper presented at the 11th international symposium on fire safety science (IAFSS), New Zealand Li YZ, Ingason H, Lönnermark A (2014) Fire development in different scales of train carriages. In: Paper presented at the 11th international symposium on fire safety science (IAFSS), New Zealand
41.
go back to reference Li YZ, Ingason H, Lönnermark A (2013) Correlations in different scales of metro carriage fire tests. SP Report 2013:13 Li YZ, Ingason H, Lönnermark A (2013) Correlations in different scales of metro carriage fire tests. SP Report 2013:13
42.
go back to reference Li YZ, Ingason H (2017) Scaling of wood pallet fires. Fire Saf J 88:96–103CrossRef Li YZ, Ingason H (2017) Scaling of wood pallet fires. Fire Saf J 88:96–103CrossRef
Metadata
Title
Scaling Technique
Authors
Haukur Ingason
Ying Zhen Li
Anders Lönnermark
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53923-7_18