Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

1. Scanning Electrochemical Potential Microscopy (SECPM) and Electrochemical STM (EC-STM)

Authors : Max Herpich, Jochen Friedl, Ulrich Stimming

Published in: Surface Science Tools for Nanomaterials Characterization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning electrochemical potential microscopy (SECPM) and electrochemical scanning tunnelling microscopy (EC-STM) allow for imaging the solid-liquid interface under in situ electrochemical conditions. In this chapter we take a look at two important aspects of SECPM and EC-STM studies: First, investigations on model electrode systems relevant for electrocatalysis are presented. Second, studies on the behavior of biomolecules immobilized on electrodes are shown. In both cases the use of EC-STM or SECPM allows for insights into the electrochemistry at a molecular level which cannot be achieved by other, rather integrating, methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Potentials in this publication were measured vs. a Ag/AgCl, KCl (3 M) RE and are here converted to vs. NHE.
 
2
Potentials in this publication were measured vs. a mercury/mercurous sulfate RE and converted to vs. NHE.
 
3
Potentials in this publication were measured vs. a Ag/AgCl, KCl (3 M) RE and converted to vs. NHE.
 
4
Potentials in this publication were measured vs. a Ag/AgCl RE and converted to vs. NHE.
 
Literature
1.
go back to reference Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV (2009) Surface chemistry in nanoscale materials. Materials (Basel) 2(4):2404–2428CrossRef Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV (2009) Surface chemistry in nanoscale materials. Materials (Basel) 2(4):2404–2428CrossRef
2.
go back to reference Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Surf Sci 126:236–244CrossRef Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Surf Sci 126:236–244CrossRef
3.
go back to reference Sonnenfeld R, Hansma PK (1986) Atomic-resolution microscopy in water. Science 232(4747):211–213CrossRef Sonnenfeld R, Hansma PK (1986) Atomic-resolution microscopy in water. Science 232(4747):211–213CrossRef
4.
go back to reference Hurth C, Li C, Bard AJ (2007) Direct probing of electrical double layers by scanning electrochemical potential microscopy. J Phys Chem C 111(12):4620–4627CrossRef Hurth C, Li C, Bard AJ (2007) Direct probing of electrical double layers by scanning electrochemical potential microscopy. J Phys Chem C 111(12):4620–4627CrossRef
5.
go back to reference Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220CrossRef Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220CrossRef
6.
go back to reference Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58CrossRef Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58CrossRef
7.
go back to reference Kolb DM (2001) Electrochemical surface science. Angew Chemie 40(7):1162–1181CrossRef Kolb DM (2001) Electrochemical surface science. Angew Chemie 40(7):1162–1181CrossRef
8.
go back to reference Hansen W, Wang C, Humphryes T (1978) Electrode emersion and the double layer. J Electroanal Chem Interfacial Electrochem 90:137–141CrossRef Hansen W, Wang C, Humphryes T (1978) Electrode emersion and the double layer. J Electroanal Chem Interfacial Electrochem 90:137–141CrossRef
9.
go back to reference Tersoff J, Hamann D (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813CrossRef Tersoff J, Hamann D (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813CrossRef
10.
go back to reference Woo D, Yoo J, Park S, Jeon IC, Kang H (2004) Direct probing into the electrochemical interface using a novel potential probe: Au(111) electrode / NaBF4 solution interface. Bull Korean Chem Soc 25(4):577–580CrossRef Woo D, Yoo J, Park S, Jeon IC, Kang H (2004) Direct probing into the electrochemical interface using a novel potential probe: Au(111) electrode / NaBF4 solution interface. Bull Korean Chem Soc 25(4):577–580CrossRef
11.
go back to reference Wolfschmidt H, Baier C, Gsell S, Fischer M, Schreck M, Stimming U (2010) STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials (Basel) 3(8):4196–4213CrossRef Wolfschmidt H, Baier C, Gsell S, Fischer M, Schreck M, Stimming U (2010) STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials (Basel) 3(8):4196–4213CrossRef
12.
go back to reference Baier C, Stimming U (2009) Imaging single enzyme molecules under in situ conditions. Angew Chem Int Ed Engl 48(30):5542–5544CrossRef Baier C, Stimming U (2009) Imaging single enzyme molecules under in situ conditions. Angew Chem Int Ed Engl 48(30):5542–5544CrossRef
13.
go back to reference Meier J, Friedrich KA, Stimming U (2002) Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss 121:365–372CrossRef Meier J, Friedrich KA, Stimming U (2002) Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss 121:365–372CrossRef
14.
go back to reference Eikerling M, Meier J, Stimming U (2003) Hydrogen evolution at a single supported nanoparticle: a kinetic model. Zeitschrift für Phys Chemie 217(4–2003):395–414CrossRef Eikerling M, Meier J, Stimming U (2003) Hydrogen evolution at a single supported nanoparticle: a kinetic model. Zeitschrift für Phys Chemie 217(4–2003):395–414CrossRef
15.
go back to reference Wolfschmidt H, Weingarth D, Stimming U (2010) Enhanced reactivity for hydrogen reactions at Pt nanoislands on Au(111). Chemphyschem 11(7):1533–1541CrossRef Wolfschmidt H, Weingarth D, Stimming U (2010) Enhanced reactivity for hydrogen reactions at Pt nanoislands on Au(111). Chemphyschem 11(7):1533–1541CrossRef
16.
go back to reference Zhang MG, Stimming U (1990) The use of time-resolved scanning tunneling microscopy for the determination of microscopic reaction rates. J Electroanal Chem 291:273–279CrossRef Zhang MG, Stimming U (1990) The use of time-resolved scanning tunneling microscopy for the determination of microscopic reaction rates. J Electroanal Chem 291:273–279CrossRef
17.
go back to reference Hugelmann M, Schindler W (2003) Tunnel barrier height oscillations at the solid/liquid interface. Surf Sci 541(1–3):L643–L648CrossRef Hugelmann M, Schindler W (2003) Tunnel barrier height oscillations at the solid/liquid interface. Surf Sci 541(1–3):L643–L648CrossRef
18.
go back to reference Nagy G (1996) Water structure at the graphite (0001) surface by STM measurements. J Electroanal Chem 409:19–23CrossRef Nagy G (1996) Water structure at the graphite (0001) surface by STM measurements. J Electroanal Chem 409:19–23CrossRef
19.
go back to reference Hugelmann M, Hugelmann P, Lorenz WJ, Schindler W (2005) Nanoelectrochemistry and nanophysics at electrochemical interfaces. Surf Sci 597(1–3):156–172CrossRef Hugelmann M, Hugelmann P, Lorenz WJ, Schindler W (2005) Nanoelectrochemistry and nanophysics at electrochemical interfaces. Surf Sci 597(1–3):156–172CrossRef
20.
go back to reference Halbritter J, Repphun G, Vinzelberg S (1995) Tunneling mechanisms in electrochemical STM—distance and voltage tunneling spectroscopy. Electrochim Acta 40(10):1385–1394CrossRef Halbritter J, Repphun G, Vinzelberg S (1995) Tunneling mechanisms in electrochemical STM—distance and voltage tunneling spectroscopy. Electrochim Acta 40(10):1385–1394CrossRef
21.
go back to reference Sumetskii M, Kornyshev A (1993) Noise in STM due to atoms moving in the tunneling space. Phys Rev B 48(23):493–506CrossRef Sumetskii M, Kornyshev A (1993) Noise in STM due to atoms moving in the tunneling space. Phys Rev B 48(23):493–506CrossRef
22.
go back to reference Sumetskii M, Kornyshev A, Stimming U (1994) Adatom diffusion characteristics from STM noise: theory. Surf Sci 307–209:23–27CrossRef Sumetskii M, Kornyshev A, Stimming U (1994) Adatom diffusion characteristics from STM noise: theory. Surf Sci 307–209:23–27CrossRef
23.
go back to reference Kornyshev AA, Kuznetsov AM (2006) Potential distribution in an in situ nano-gap. Electrochem Commun 8(5):679–682CrossRef Kornyshev AA, Kuznetsov AM (2006) Potential distribution in an in situ nano-gap. Electrochem Commun 8(5):679–682CrossRef
24.
go back to reference Kornyshev AA, Kuznetsov AM (2006) A new type of in situ single-molecule rectifier. ChemPhysChem 7(5):1036–1040CrossRef Kornyshev AA, Kuznetsov AM (2006) A new type of in situ single-molecule rectifier. ChemPhysChem 7(5):1036–1040CrossRef
25.
go back to reference Wang M, Bugarski S, Stimming U (2008) Probing single flavoprotein molecules on graphite in aqueous solution with scanning tunneling microscopy. Small 4(8):1110–1114CrossRef Wang M, Bugarski S, Stimming U (2008) Probing single flavoprotein molecules on graphite in aqueous solution with scanning tunneling microscopy. Small 4(8):1110–1114CrossRef
26.
go back to reference Alessandrini A, Corni S, Facci P (2006) Unravelling single metalloprotein electron transfer by scanning probe techniques. Phys Chem Chem Phys 8(38):4383–4397CrossRef Alessandrini A, Corni S, Facci P (2006) Unravelling single metalloprotein electron transfer by scanning probe techniques. Phys Chem Chem Phys 8(38):4383–4397CrossRef
27.
go back to reference Schmickler W, Tao N (1997) Measuring the inverted region of an electron transfer reaction with a scanning tunneling microscope. Electrochim Acta 42(18):2809–2815CrossRef Schmickler W, Tao N (1997) Measuring the inverted region of an electron transfer reaction with a scanning tunneling microscope. Electrochim Acta 42(18):2809–2815CrossRef
28.
go back to reference Schmickler W (1986) A theory of adiabatic electron-transfer reactions. J Electroanal Chem Interfacial Electrochem 204(1–2):31–43CrossRef Schmickler W (1986) A theory of adiabatic electron-transfer reactions. J Electroanal Chem Interfacial Electrochem 204(1–2):31–43CrossRef
29.
go back to reference Gerischer H (1960) Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. Zeitschrift für Phys Chemie 26:223–247CrossRef Gerischer H (1960) Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. Zeitschrift für Phys Chemie 26:223–247CrossRef
30.
go back to reference Tao N (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76(21):4066–4069CrossRef Tao N (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76(21):4066–4069CrossRef
31.
go back to reference Kuznetsov AN, Schmickler W (2002) Mediated electron exchange between an electrode and the tip of a scanning tunneling microscope – a stochastic approach. Chem Phys 282(3):371–377CrossRef Kuznetsov AN, Schmickler W (2002) Mediated electron exchange between an electrode and the tip of a scanning tunneling microscope – a stochastic approach. Chem Phys 282(3):371–377CrossRef
32.
go back to reference Weaver MJ (1987) Redox reactions at metal–solution interfaces. In: Compton RG (ed) Electrode kinetics: reactions, vol 27. Elsevier, Amsterdam, pp 1–60CrossRef Weaver MJ (1987) Redox reactions at metal–solution interfaces. In: Compton RG (ed) Electrode kinetics: reactions, vol 27. Elsevier, Amsterdam, pp 1–60CrossRef
33.
go back to reference Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J Phys Chem B 106(6):1131–1152CrossRef Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J Phys Chem B 106(6):1131–1152CrossRef
34.
go back to reference Friis E, Kharkats Y, Kuznetsov A, Ulstrup J (1998) In situ scanning tunneling microscopy of a redox molecule as a vibrationally coherent electronic three-level process. J Phys Chem A 5639(98):7851–7859CrossRef Friis E, Kharkats Y, Kuznetsov A, Ulstrup J (1998) In situ scanning tunneling microscopy of a redox molecule as a vibrationally coherent electronic three-level process. J Phys Chem A 5639(98):7851–7859CrossRef
35.
go back to reference Friis EP, Andersen JE, Kharkats YI, Kuznetsov AM, Nichols RJ, Zhang JD, Ulstrup J (1999) An approach to long-range electron transfer mechanisms in metalloproteins: in situ scanning tunneling microscopy with submolecular resolution. Proc Natl Acad Sci U S A 96(4):1379–1384CrossRef Friis EP, Andersen JE, Kharkats YI, Kuznetsov AM, Nichols RJ, Zhang JD, Ulstrup J (1999) An approach to long-range electron transfer mechanisms in metalloproteins: in situ scanning tunneling microscopy with submolecular resolution. Proc Natl Acad Sci U S A 96(4):1379–1384CrossRef
36.
go back to reference Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108(7):2737–2791CrossRef Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108(7):2737–2791CrossRef
37.
go back to reference Zhang J, Chi Q, Hansen AG, Jensen PS, Salvatore P, Ulstrup J (2012) Interfacial electrochemical electron transfer in biology – towards the level of the single molecule. FEBS Lett 586(5):526–535CrossRef Zhang J, Chi Q, Hansen AG, Jensen PS, Salvatore P, Ulstrup J (2012) Interfacial electrochemical electron transfer in biology – towards the level of the single molecule. FEBS Lett 586(5):526–535CrossRef
38.
go back to reference Corbella C, Pascual E, Oncins G, Canal C, Andújar JL, Bertran E (2005) Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering. Thin Solid Films 482(1–2):293–298CrossRef Corbella C, Pascual E, Oncins G, Canal C, Andújar JL, Bertran E (2005) Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering. Thin Solid Films 482(1–2):293–298CrossRef
39.
go back to reference Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501CrossRef Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501CrossRef
40.
go back to reference Baier C (2010) Electron transfer phenomena in interfacial bioelectrochemistry. Dissertation, Technische Universität München Baier C (2010) Electron transfer phenomena in interfacial bioelectrochemistry. Dissertation, Technische Universität München
41.
go back to reference Hurth CM (2005) Scanning probe microscopy studies of active enzymes at solid surfaces. Dissertation, The University of Texas at Austin Hurth CM (2005) Scanning probe microscopy studies of active enzymes at solid surfaces. Dissertation, The University of Texas at Austin
42.
go back to reference Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochim Acta 55(18):5210–5222CrossRef Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochim Acta 55(18):5210–5222CrossRef
43.
go back to reference Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical analysis of debye screening effect in electrode surface potential mapping by scanning electrochemical potential microscopy. Electrochem Commun 12(10):1391–1394CrossRef Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical analysis of debye screening effect in electrode surface potential mapping by scanning electrochemical potential microscopy. Electrochem Commun 12(10):1391–1394CrossRef
44.
go back to reference Hubbard AT (1980) Electrochemistry of well-defined surfaces. Acc Chem Res 13:177–184CrossRef Hubbard AT (1980) Electrochemistry of well-defined surfaces. Acc Chem Res 13:177–184CrossRef
45.
go back to reference Laidler KJ (1996) Commission on chemical kinetics * a glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68(1):149–192CrossRef Laidler KJ (1996) Commission on chemical kinetics * a glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68(1):149–192CrossRef
46.
go back to reference Conway BE, Bockris JO (1957) Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J Chem Phys 26(3):532CrossRef Conway BE, Bockris JO (1957) Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J Chem Phys 26(3):532CrossRef
47.
go back to reference Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063CrossRef Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063CrossRef
48.
go back to reference Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23CrossRef Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23CrossRef
49.
go back to reference Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J Electroanal Chem 107:205–209CrossRef Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J Electroanal Chem 107:205–209CrossRef
50.
go back to reference Bauer E (1958) Phaenomenologische Theorie der Kristallabscheidung an Oberflaechen I. Zeitschrift für Krist 110:372–394CrossRef Bauer E (1958) Phaenomenologische Theorie der Kristallabscheidung an Oberflaechen I. Zeitschrift für Krist 110:372–394CrossRef
51.
go back to reference Frank FC, van der Merwe JH (1949) One-dimensional dislocations. Proc R Soc Lond A Math Phys Sci 198(1053):205–216CrossRef Frank FC, van der Merwe JH (1949) One-dimensional dislocations. Proc R Soc Lond A Math Phys Sci 198(1053):205–216CrossRef
52.
go back to reference Volmer M, Weber A (1926) Keimbildung in übersättigten Gebilden. Z Phys Chem 119:277 Volmer M, Weber A (1926) Keimbildung in übersättigten Gebilden. Z Phys Chem 119:277
53.
go back to reference Stranski JN, Krastanov L (1938) Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitz Ber Akad Wiss Wien, Mat Nat 146:797–810 Stranski JN, Krastanov L (1938) Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitz Ber Akad Wiss Wien, Mat Nat 146:797–810
54.
go back to reference Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRef Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRef
55.
go back to reference Vasilic R, Viyannalage L, Dimitrov N (2006) Epitaxial growth of Ag on Au(111) by galvanic displacement of Pb and Tl monolayers. J Electrochem Soc 153:648–655CrossRef Vasilic R, Viyannalage L, Dimitrov N (2006) Epitaxial growth of Ag on Au(111) by galvanic displacement of Pb and Tl monolayers. J Electrochem Soc 153:648–655CrossRef
56.
go back to reference Quaino P, Santos E, Wolfschmidt H, Montero M, Stimming U (2011) Theory meets experiment: electrocatalysis of hydrogen oxidation/evolution at Pd–Au nanostructures. Catal Today 177(1):55–63CrossRef Quaino P, Santos E, Wolfschmidt H, Montero M, Stimming U (2011) Theory meets experiment: electrocatalysis of hydrogen oxidation/evolution at Pd–Au nanostructures. Catal Today 177(1):55–63CrossRef
57.
go back to reference Wolfschmidt H, Bussar R, Stimming U (2008) Charge transfer reactions at nanostructured Au(111) surfaces: influence of the substrate material on electrocatalytic activity. J Phys Condens Matter 20(37):374127CrossRef Wolfschmidt H, Bussar R, Stimming U (2008) Charge transfer reactions at nanostructured Au(111) surfaces: influence of the substrate material on electrocatalytic activity. J Phys Condens Matter 20(37):374127CrossRef
58.
go back to reference Jung C, Kim J, Kyun C (2010) CO preoxidation on Ru-modified Pt(111). Electrochem Commun 12:1363–1366CrossRef Jung C, Kim J, Kyun C (2010) CO preoxidation on Ru-modified Pt(111). Electrochem Commun 12:1363–1366CrossRef
59.
go back to reference Kim J, Jung C, Rhee CK, Lim T (2007) Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 23(21):10831–10836CrossRef Kim J, Jung C, Rhee CK, Lim T (2007) Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 23(21):10831–10836CrossRef
60.
go back to reference Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390(4–6):440–444CrossRef Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390(4–6):440–444CrossRef
61.
go back to reference Kolb DM, Simeone FC (2005) Electrochemical nanostructuring with an STM: a status report. Electrochim Acta 50(15):2989–2996CrossRef Kolb DM, Simeone FC (2005) Electrochemical nanostructuring with an STM: a status report. Electrochim Acta 50(15):2989–2996CrossRef
62.
go back to reference Hoyer R, Kibler L, Kolb D (2003) The initial stages of palladium deposition onto Pt(111). Electrochim Acta 49:63–72CrossRef Hoyer R, Kibler L, Kolb D (2003) The initial stages of palladium deposition onto Pt(111). Electrochim Acta 49:63–72CrossRef
63.
go back to reference Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I (2013) CO 2 Electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C 117(111):20500–20508CrossRef Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I (2013) CO 2 Electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C 117(111):20500–20508CrossRef
64.
go back to reference Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379(1–2):307–314CrossRef Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379(1–2):307–314CrossRef
65.
go back to reference Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360CrossRef
66.
go back to reference Tong Y, Kim HS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E (2002) An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 124:468–473CrossRef Tong Y, Kim HS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E (2002) An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 124:468–473CrossRef
67.
go back to reference Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273CrossRef Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273CrossRef
68.
go back to reference Yajima T, Wakabayashi N, Uchida H, Watanabe M (2003) Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chem Commun (Camb) 7:828–829CrossRef Yajima T, Wakabayashi N, Uchida H, Watanabe M (2003) Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chem Commun (Camb) 7:828–829CrossRef
69.
go back to reference Maillard F, Lu G-Q, Wieckowski A, Stimming U (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109(34):16230–16243CrossRef Maillard F, Lu G-Q, Wieckowski A, Stimming U (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109(34):16230–16243CrossRef
70.
go back to reference Strbac S, Johnston CM, Lu GQ, Crown A, Wieckowski A (2004) In situ STM study of nanosized Ru and Os islands spontaneously deposited on Pt(111) and Au(111) electrodes. Surf Sci 573:80–99CrossRef Strbac S, Johnston CM, Lu GQ, Crown A, Wieckowski A (2004) In situ STM study of nanosized Ru and Os islands spontaneously deposited on Pt(111) and Au(111) electrodes. Surf Sci 573:80–99CrossRef
71.
go back to reference Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts. J Electroanal Chem 524–525:261–272CrossRef Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts. J Electroanal Chem 524–525:261–272CrossRef
72.
go back to reference El-Aziz AM, Hoyer R, Kibler LA (2010) Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces. Chem Phys Chem 11(13):2906–2911CrossRef El-Aziz AM, Hoyer R, Kibler LA (2010) Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces. Chem Phys Chem 11(13):2906–2911CrossRef
73.
go back to reference Inukai J, Tryk DA, Abe T, Wakisaka M, Uchida H, Watanabe M (2013) Direct STM elucidation of the Effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. J Am Chem Soc 135(111):1476–1490CrossRef Inukai J, Tryk DA, Abe T, Wakisaka M, Uchida H, Watanabe M (2013) Direct STM elucidation of the Effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. J Am Chem Soc 135(111):1476–1490CrossRef
74.
go back to reference Hwang S, Lee J, Kwak J (2005) Nitrate reduction catalyzed by nanocomposite layer of Ag and Pb on Au(111). J Electroanal Chem 579:143–152CrossRef Hwang S, Lee J, Kwak J (2005) Nitrate reduction catalyzed by nanocomposite layer of Ag and Pb on Au(111). J Electroanal Chem 579:143–152CrossRef
75.
go back to reference Brülle T, Stimming U (2009) Platinum nanostructured HOPG – Preparation, characterization and reactivity. J Electroanal Chem 636(1–2):10–17CrossRef Brülle T, Stimming U (2009) Platinum nanostructured HOPG – Preparation, characterization and reactivity. J Electroanal Chem 636(1–2):10–17CrossRef
76.
go back to reference Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116(3):2322–2329CrossRef Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116(3):2322–2329CrossRef
77.
go back to reference Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12CrossRef Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12CrossRef
78.
go back to reference Sheridan L, Kim Y (2013) Palladium nanofilms formed on Au (111) by electrochemical atomic layer deposition (E-ALD): studies using voltammetry and in situ scanning tunneling microscopy. J Phys Chem C 117(111):15728–15740CrossRef Sheridan L, Kim Y (2013) Palladium nanofilms formed on Au (111) by electrochemical atomic layer deposition (E-ALD): studies using voltammetry and in situ scanning tunneling microscopy. J Phys Chem C 117(111):15728–15740CrossRef
79.
go back to reference Brülle T, Denisenko A, Sternschulte H, Stimming U (2011) Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys Chem Chem Phys 13(28):12883–12891CrossRef Brülle T, Denisenko A, Sternschulte H, Stimming U (2011) Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys Chem Chem Phys 13(28):12883–12891CrossRef
80.
go back to reference Zwolinski BJ, Marcus RJ, Eyring H (1955) Inorganic oxidation-reduction reactions in solution. Chem Rev 55(1):157–180CrossRef Zwolinski BJ, Marcus RJ, Eyring H (1955) Inorganic oxidation-reduction reactions in solution. Chem Rev 55(1):157–180CrossRef
81.
go back to reference Marcus RA (1960) Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.- A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss Faraday Soc 29:21–31CrossRef Marcus RA (1960) Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.- A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss Faraday Soc 29:21–31CrossRef
82.
go back to reference Fedurco M (2000) Redox reactions of heme-containing metalloproteins: dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions. Coord Chem Rev 209(1):263–331CrossRef Fedurco M (2000) Redox reactions of heme-containing metalloproteins: dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions. Coord Chem Rev 209(1):263–331CrossRef
83.
go back to reference Churg A, Weiss R (1983) On the action of cytochrome c: correlating geometry changes upon oxidation with activation energies of electron transfer. J Phys Chem 87:1683–1694CrossRef Churg A, Weiss R (1983) On the action of cytochrome c: correlating geometry changes upon oxidation with activation energies of electron transfer. J Phys Chem 87:1683–1694CrossRef
84.
go back to reference Corni S (2005) The reorganization energy of azurin in bulk solution and in the electrochemical scanning tunneling microscopy setup. J Phys Chem B 109(8):3423–3430CrossRef Corni S (2005) The reorganization energy of azurin in bulk solution and in the electrochemical scanning tunneling microscopy setup. J Phys Chem B 109(8):3423–3430CrossRef
85.
go back to reference Heitele H, Michel-Beyerle M (1985) Electron transfer through aromatic spacers in bridged electron-donor-acceptor molecules. J Am Chem Soc 107:8286–8288CrossRef Heitele H, Michel-Beyerle M (1985) Electron transfer through aromatic spacers in bridged electron-donor-acceptor molecules. J Am Chem Soc 107:8286–8288CrossRef
86.
go back to reference Heitele H, Michel-Beyerle ME, Finckh P (1987) The influence of dielectric relaxation on intramolecular electron transfer. Chem Phys Lett 138(2):237–243CrossRef Heitele H, Michel-Beyerle ME, Finckh P (1987) The influence of dielectric relaxation on intramolecular electron transfer. Chem Phys Lett 138(2):237–243CrossRef
87.
go back to reference Heitele H, Pöllinger F, Weeren S, Michel-Beyerle M (1990) Influence of solvent polarity on intramolecular electron transfer. A consistency test of free energies of reaction and solvent reorganization with experimental rates. Chem Phys 143:325–332CrossRef Heitele H, Pöllinger F, Weeren S, Michel-Beyerle M (1990) Influence of solvent polarity on intramolecular electron transfer. A consistency test of free energies of reaction and solvent reorganization with experimental rates. Chem Phys 143:325–332CrossRef
88.
go back to reference Heitele H, Pöllinger F, Weeren A, Michel-Beyerle ME (1990) Solvent polarity effects on intramolecular electron transfer: an estimate of activation entropies. Chem Phys Lett 168(6):598–604CrossRef Heitele H, Pöllinger F, Weeren A, Michel-Beyerle ME (1990) Solvent polarity effects on intramolecular electron transfer: an estimate of activation entropies. Chem Phys Lett 168(6):598–604CrossRef
89.
go back to reference Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Proton-coupled electron transfer. Chem Rev 112(7):4016–4093CrossRef Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Proton-coupled electron transfer. Chem Rev 112(7):4016–4093CrossRef
90.
go back to reference Wang M, Bugarski S, Stimming U (2008) Topological and electron-transfer properties of glucose oxidase adsorbed on highly oriented pyrolytic graphite electrodes. J Phys Chem C 112(13):5165–5173CrossRef Wang M, Bugarski S, Stimming U (2008) Topological and electron-transfer properties of glucose oxidase adsorbed on highly oriented pyrolytic graphite electrodes. J Phys Chem C 112(13):5165–5173CrossRef
91.
go back to reference Zhang J, Welinder AC, Hansen AG, Christensen HEM, Ulstrup J (2003) Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes. J Phys Chem B 107(45):12480–12484CrossRef Zhang J, Welinder AC, Hansen AG, Christensen HEM, Ulstrup J (2003) Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes. J Phys Chem B 107(45):12480–12484CrossRef
92.
go back to reference Della Pia EA, Chi Q, Macdonald JE, Ulstrup J, Jones DD, Elliott M (2012) Fast electron transfer through a single molecule natively structured redox protein. Nanoscale 4(22):7106–7113CrossRef Della Pia EA, Chi Q, Macdonald JE, Ulstrup J, Jones DD, Elliott M (2012) Fast electron transfer through a single molecule natively structured redox protein. Nanoscale 4(22):7106–7113CrossRef
93.
go back to reference Davis JJ, Peters B, Xi W (2008) Force modulation and electrochemical gating of conductance in a cytochrome. J Phys Condens Matter 20(37):374123CrossRef Davis JJ, Peters B, Xi W (2008) Force modulation and electrochemical gating of conductance in a cytochrome. J Phys Condens Matter 20(37):374123CrossRef
94.
go back to reference Alessandrini A, Gerunda M, Canters GW, Verbeet MP, Facci P (2003) Electron tunnelling through azurin is mediated by the active site Cu ion. Chem Phys Lett 376(5–6):625–630CrossRef Alessandrini A, Gerunda M, Canters GW, Verbeet MP, Facci P (2003) Electron tunnelling through azurin is mediated by the active site Cu ion. Chem Phys Lett 376(5–6):625–630CrossRef
95.
go back to reference Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Single-metalloprotein wet biotransistor. Appl Phys Lett 86(13):133902CrossRef Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Single-metalloprotein wet biotransistor. Appl Phys Lett 86(13):133902CrossRef
96.
go back to reference Chi Q, Farver O, Ulstrup J (2005) Long-range protein electron transfer observed at the single-molecule level: in situ mapping of redox-gated tunneling resonance. Proc Natl Acad Sci U S A 102(45):16203–16208CrossRef Chi Q, Farver O, Ulstrup J (2005) Long-range protein electron transfer observed at the single-molecule level: in situ mapping of redox-gated tunneling resonance. Proc Natl Acad Sci U S A 102(45):16203–16208CrossRef
97.
go back to reference Kim S-U, Yagati AK, Min J, Choi J-W (2010) Nanoscale protein-based memory device composed of recombinant azurin. Biomaterials 31(6):1293–1298CrossRef Kim S-U, Yagati AK, Min J, Choi J-W (2010) Nanoscale protein-based memory device composed of recombinant azurin. Biomaterials 31(6):1293–1298CrossRef
98.
go back to reference Facci P, Alliata D, Cannistraro S (2001) Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy. Ultramicroscopy 89(4):291–298CrossRef Facci P, Alliata D, Cannistraro S (2001) Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy. Ultramicroscopy 89(4):291–298CrossRef
99.
go back to reference Chi Q, Zhang J, Arslan T, Borg L, Pedersen GW, Christensen HEM, Nazmudtinov RR, Ulstrup J (2010) Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c4 assembled on Au(111) surfaces. J Phys Chem B 114(16):5617–5624CrossRef Chi Q, Zhang J, Arslan T, Borg L, Pedersen GW, Christensen HEM, Nazmudtinov RR, Ulstrup J (2010) Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c4 assembled on Au(111) surfaces. J Phys Chem B 114(16):5617–5624CrossRef
100.
go back to reference Welinder AC, Zhang J, Steensgaard DB, Ulstrup J (2010) Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry. Phys Chem Chem Phys 12(34):9999–10011CrossRef Welinder AC, Zhang J, Steensgaard DB, Ulstrup J (2010) Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry. Phys Chem Chem Phys 12(34):9999–10011CrossRef
101.
go back to reference Climent V, Zhang J, Friis EP, Østergaard LH, Ulstrup J (2012) Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes. J Phys Chem C 116(1):1232–1243CrossRef Climent V, Zhang J, Friis EP, Østergaard LH, Ulstrup J (2012) Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes. J Phys Chem C 116(1):1232–1243CrossRef
102.
go back to reference Walsh C (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13:148–155CrossRef Walsh C (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13:148–155CrossRef
103.
go back to reference Marcus R, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322CrossRef Marcus R, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322CrossRef
104.
go back to reference Macara IG, Hoy TG, Harrison PM (1972) The formation of ferritin from apoferritin. Biochem J 126:151–162CrossRef Macara IG, Hoy TG, Harrison PM (1972) The formation of ferritin from apoferritin. Biochem J 126:151–162CrossRef
105.
go back to reference Nar H, Huber R, Messerschmidt A, Filippou AC, Barth M, Jaquinod M, van de Kamp M, Canters GW (1992) Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in escherichia coli of pseudomonas aeruginosa copper azurin. Eur J Biochem 205(3):1123–1129CrossRef Nar H, Huber R, Messerschmidt A, Filippou AC, Barth M, Jaquinod M, van de Kamp M, Canters GW (1992) Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in escherichia coli of pseudomonas aeruginosa copper azurin. Eur J Biochem 205(3):1123–1129CrossRef
106.
go back to reference Saltiel A, Kahn C (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRef Saltiel A, Kahn C (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRef
107.
go back to reference Pekar A, Frank B (1972) Conformation of proinsulin. Comparison of insulin and proinsulin self-association at neutral pH. Biochemistry 11(22):4013–4016CrossRef Pekar A, Frank B (1972) Conformation of proinsulin. Comparison of insulin and proinsulin self-association at neutral pH. Biochemistry 11(22):4013–4016CrossRef
108.
go back to reference Raffalt AC, Schmidt L, Christensen HEM, Chi Q, Ulstrup J (2009) Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri. J Inorg Biochem 103(5):717–722CrossRef Raffalt AC, Schmidt L, Christensen HEM, Chi Q, Ulstrup J (2009) Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri. J Inorg Biochem 103(5):717–722CrossRef
109.
go back to reference Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606CrossRef Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606CrossRef
110.
go back to reference Farver O, Tepper AWJW, Wherland S, Canters GW, Pecht I (2009) Site-site interactions enhances intramolecular electron transfer in streptomyces coelicolor laccase. J Am Chem Soc 131(51):18226–18227CrossRef Farver O, Tepper AWJW, Wherland S, Canters GW, Pecht I (2009) Site-site interactions enhances intramolecular electron transfer in streptomyces coelicolor laccase. J Am Chem Soc 131(51):18226–18227CrossRef
111.
go back to reference Tao N, Cardenas G, Cunha F, Shi Z (1995) In situ STM and AFM study of protoporphyrin and iron (III) and zinc (II) protoporphyrins adsorbed on graphite in aqueous solutions. Langmuir 11:4445–4448CrossRef Tao N, Cardenas G, Cunha F, Shi Z (1995) In situ STM and AFM study of protoporphyrin and iron (III) and zinc (II) protoporphyrins adsorbed on graphite in aqueous solutions. Langmuir 11:4445–4448CrossRef
112.
go back to reference McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687CrossRef McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687CrossRef
113.
go back to reference Choo H-S, Kinumoto T, Jeong S-K, Iriyama Y, Abe T, Ogumi Z (2007) Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J Electrochem Soc 154(10):B1017CrossRef Choo H-S, Kinumoto T, Jeong S-K, Iriyama Y, Abe T, Ogumi Z (2007) Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J Electrochem Soc 154(10):B1017CrossRef
114.
go back to reference Zhang J, Chi Q, Dong S, Wang E (1996) In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property. Bioelectrochem Bioenerg 39:267–274CrossRef Zhang J, Chi Q, Dong S, Wang E (1996) In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property. Bioelectrochem Bioenerg 39:267–274CrossRef
115.
go back to reference Chi Q, Zhang J, Friis EP, Andersen JET, Ulstrup J (1999) Electrochemistry of self-assembled monolayers of the blue copper protein pseudomonas aeruginosa azurin on Au(111). Electrochem Commun 1(3–4):91–96CrossRef Chi Q, Zhang J, Friis EP, Andersen JET, Ulstrup J (1999) Electrochemistry of self-assembled monolayers of the blue copper protein pseudomonas aeruginosa azurin on Au(111). Electrochem Commun 1(3–4):91–96CrossRef
116.
go back to reference Vaz-Dominguez C, Pita M, de Lacey AL, Shleev S, Cuesta A (2012) Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified au electrodes. J Phys Chem C 116:16532–16540CrossRef Vaz-Dominguez C, Pita M, de Lacey AL, Shleev S, Cuesta A (2012) Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified au electrodes. J Phys Chem C 116:16532–16540CrossRef
117.
go back to reference Schmickler W, Widrig C (1992) The investigation of redox reactions with a scanning tunneling microscope: experimental and theoretical aspects. J Electroanal Chem 336:213–221CrossRef Schmickler W, Widrig C (1992) The investigation of redox reactions with a scanning tunneling microscope: experimental and theoretical aspects. J Electroanal Chem 336:213–221CrossRef
118.
go back to reference Schmickler W (1993) Investigation of electrochemical electron transfer reactions with a scanning tunneling microscope: a theoretical study. Surf Sci 295(1–2):43–56CrossRef Schmickler W (1993) Investigation of electrochemical electron transfer reactions with a scanning tunneling microscope: a theoretical study. Surf Sci 295(1–2):43–56CrossRef
119.
go back to reference Kuznetsov A, Sommer-Larsen P, Ulstrup J (1992) Resonance and environmental fluctuation effects in STM currents through large adsorbed molecules. Surf Sci 275:52–64CrossRef Kuznetsov A, Sommer-Larsen P, Ulstrup J (1992) Resonance and environmental fluctuation effects in STM currents through large adsorbed molecules. Surf Sci 275:52–64CrossRef
120.
go back to reference Ryde U, Olsson M (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem 81(2001):335–347CrossRef Ryde U, Olsson M (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem 81(2001):335–347CrossRef
121.
go back to reference Dos Santos L, Climent V, Blanford CF, Armstrong FA (2010) Mechanistic studies of the ‘blue’Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys Chem Chem Phys 12:13962–13974CrossRef Dos Santos L, Climent V, Blanford CF, Armstrong FA (2010) Mechanistic studies of the ‘blue’Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys Chem Chem Phys 12:13962–13974CrossRef
122.
go back to reference Vesenka J, Miller R, Henderson E (1994) Three-dimensional probe reconstruction for atomic force microscopy. Rev Sci Instrum 65(7):2249CrossRef Vesenka J, Miller R, Henderson E (1994) Three-dimensional probe reconstruction for atomic force microscopy. Rev Sci Instrum 65(7):2249CrossRef
123.
go back to reference Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T, Błaszczyk A, Mayor M (2006) Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss 131:121CrossRef Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T, Błaszczyk A, Mayor M (2006) Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss 131:121CrossRef
124.
go back to reference Zhang J, Ulstrup J (2007) Oxygen-free in situ scanning tunnelling microscopy. J Electroanal Chem 599(2):213–220CrossRef Zhang J, Ulstrup J (2007) Oxygen-free in situ scanning tunnelling microscopy. J Electroanal Chem 599(2):213–220CrossRef
125.
go back to reference Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc Natl Acad Sci U S A 100(1):62–67CrossRef Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc Natl Acad Sci U S A 100(1):62–67CrossRef
126.
go back to reference Losic D, Shapter J, Gooding J (2002) Scanning tunneling microscopy studies of glucose oxidase on gold surfaces. Langmuir 18(14):5422–5428CrossRef Losic D, Shapter J, Gooding J (2002) Scanning tunneling microscopy studies of glucose oxidase on gold surfaces. Langmuir 18(14):5422–5428CrossRef
127.
go back to reference Rice RJ, McCreery RL (1989) Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal Chem 61(15):1637–1641CrossRef Rice RJ, McCreery RL (1989) Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal Chem 61(15):1637–1641CrossRef
128.
go back to reference Friedl J, Bauer C, Rinaldi A, Stimming U (2013) Electron transfer kinetics of the VO2+/VO2+ – reaction on multi-walled carbon nanotubes. Carbon NY 63:228–239CrossRef Friedl J, Bauer C, Rinaldi A, Stimming U (2013) Electron transfer kinetics of the VO2+/VO2+ – reaction on multi-walled carbon nanotubes. Carbon NY 63:228–239CrossRef
129.
go back to reference Crichton RR (1973) Structure and function of ferritin. Angew Chem Int Ed Engl 12(1):57–65CrossRef Crichton RR (1973) Structure and function of ferritin. Angew Chem Int Ed Engl 12(1):57–65CrossRef
130.
go back to reference Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57(4):678–683CrossRef Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57(4):678–683CrossRef
131.
go back to reference Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548CrossRef Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548CrossRef
132.
go back to reference Maruccio G, Biasco A, Visconti P, Bramanti A, Pompa PP, Calabi F, Cingolani R, Rinaldi R, Corni S, Di Felice R, Molinari E, Verbeet MP, Canters GW (2005) Towards protein field-effect transistors: report and model of a prototype. Adv Mater 17(7):816–822CrossRef Maruccio G, Biasco A, Visconti P, Bramanti A, Pompa PP, Calabi F, Cingolani R, Rinaldi R, Corni S, Di Felice R, Molinari E, Verbeet MP, Canters GW (2005) Towards protein field-effect transistors: report and model of a prototype. Adv Mater 17(7):816–822CrossRef
133.
go back to reference Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 672(1989):669–672 Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 672(1989):669–672
134.
go back to reference Kubatkin S, Danilov A, Hjort M, Cornil J (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959):698–701CrossRef Kubatkin S, Danilov A, Hjort M, Cornil J (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959):698–701CrossRef
135.
go back to reference Choi J-W, Oh B-K, Kim YJ, Min J (2007) Protein-based biomemory device consisting of the cysteine-modified azurin. Appl Phys Lett 91(26):263902CrossRef Choi J-W, Oh B-K, Kim YJ, Min J (2007) Protein-based biomemory device consisting of the cysteine-modified azurin. Appl Phys Lett 91(26):263902CrossRef
136.
go back to reference Lee T, Kim S-U, Min J, Choi J-W (2010) Multilevel biomemory device consisting of recombinant azurin/cytochrome C. Adv Mater 22(4):510–514CrossRef Lee T, Kim S-U, Min J, Choi J-W (2010) Multilevel biomemory device consisting of recombinant azurin/cytochrome C. Adv Mater 22(4):510–514CrossRef
137.
go back to reference Yagati AK, Kim S-U, Min J, Choi J-W (2009) Multi-bit biomemory consisting of recombinant protein variants, azurin. Biosens Bioelectron 24(5):1503–1507CrossRef Yagati AK, Kim S-U, Min J, Choi J-W (2009) Multi-bit biomemory consisting of recombinant protein variants, azurin. Biosens Bioelectron 24(5):1503–1507CrossRef
Metadata
Title
Scanning Electrochemical Potential Microscopy (SECPM) and Electrochemical STM (EC-STM)
Authors
Max Herpich
Jochen Friedl
Ulrich Stimming
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_1

Premium Partners