Skip to main content
Top

2015 | OriginalPaper | Chapter

3. Scanning Probe Microscopy for Nanolithography

Author : C. B. Samantaray

Published in: Surface Science Tools for Nanomaterials Characterization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Scanning probe microscopy (SPM) has been used for both fabrication and characterization techniques of nanomaterials, nanostructures, or nanopatterning. There are two fundamental approaches such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) that are being used for the scanning probe lithography (SPL) process. In this chapter, we will discuss a recent development of nanolithography based upon new ideas and innovations of scanning probe microscopy and direct-write approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180CrossRef Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180CrossRef
2.
go back to reference Binning G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling techniques. Phys Rev Lett 49:57–61CrossRef Binning G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling techniques. Phys Rev Lett 49:57–61CrossRef
3.
go back to reference Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRef Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRef
4.
go back to reference Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663CrossRef Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663CrossRef
5.
go back to reference Amro NA, Xu S, Liu G-Y (2000) Patterning surfaces using tip-directed displacement and self-assembly. Langmuir 16:3006–3009CrossRef Amro NA, Xu S, Liu G-Y (2000) Patterning surfaces using tip-directed displacement and self-assembly. Langmuir 16:3006–3009CrossRef
6.
go back to reference Maoz R, Frydman E, Cohen SR, Sagiv J (2000) Constructive nanolithography: site-defined silver self-assembly on nanoelectrochemically patterned monolayer surfaces. Adv Mater 12:424–429CrossRef Maoz R, Frydman E, Cohen SR, Sagiv J (2000) Constructive nanolithography: site-defined silver self-assembly on nanoelectrochemically patterned monolayer surfaces. Adv Mater 12:424–429CrossRef
7.
go back to reference Maoz R, Frydman E, Cohen SR, Sagiv J (2000) Constructive nanolithography: inert monolayers as patternable templates for in-situ nanofabrication of metal–semiconductor- organic surface structures; a generic approach. Adv Mater 12:725–731CrossRef Maoz R, Frydman E, Cohen SR, Sagiv J (2000) Constructive nanolithography: inert monolayers as patternable templates for in-situ nanofabrication of metal–semiconductor- organic surface structures; a generic approach. Adv Mater 12:725–731CrossRef
8.
go back to reference Demers L, Ginger DS, Park S-J, Li Z, Chung S-W, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and Li, insulators by dip-pen nanolithography. Science 296:1836–1838CrossRef Demers L, Ginger DS, Park S-J, Li Z, Chung S-W, Mirkin CA (2002) Direct patterning of modified oligonucleotides on metals and Li, insulators by dip-pen nanolithography. Science 296:1836–1838CrossRef
9.
go back to reference Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705CrossRef Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M (2002) Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–1705CrossRef
10.
go back to reference Hyun J, Ahn SJ, Lee WK, Chilkoti A, Zauscher S (2002) Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Lett 2:1203–1207CrossRef Hyun J, Ahn SJ, Lee WK, Chilkoti A, Zauscher S (2002) Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Lett 2:1203–1207CrossRef
11.
go back to reference Lee K-B, Lim J-H, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589CrossRef Lee K-B, Lim J-H, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589CrossRef
12.
go back to reference Chow DC, Lee W-K, Zauscher S, Chilkoti A (2005) Enzymatic fabrication of DNA nanostructures: extension of a self-assembled oligonucleotide monolayer on gold arrays. J Am Chem Soc 127:14122–14123CrossRef Chow DC, Lee W-K, Zauscher S, Chilkoti A (2005) Enzymatic fabrication of DNA nanostructures: extension of a self-assembled oligonucleotide monolayer on gold arrays. J Am Chem Soc 127:14122–14123CrossRef
13.
go back to reference LaFratta CN, Walt DR (2008) Very high density sensing array. Chem Rev 108:614–637CrossRef LaFratta CN, Walt DR (2008) Very high density sensing array. Chem Rev 108:614–637CrossRef
14.
go back to reference Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647CrossRef Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647CrossRef
15.
go back to reference Braunschweig AB, Huo F, Mirkin CA (2009) Molecular printing. Nat Chem 1:353–358CrossRef Braunschweig AB, Huo F, Mirkin CA (2009) Molecular printing. Nat Chem 1:353–358CrossRef
16.
go back to reference Paxton WF, Spruell JM, Stoddart JF (2009) Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry. J Am Chem Soc 131:6692–6694CrossRef Paxton WF, Spruell JM, Stoddart JF (2009) Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry. J Am Chem Soc 131:6692–6694CrossRef
17.
go back to reference Unruh DA, Mauldin C, Pastine SJ, Rolandi M, Fréchet JMJ (2010) Bifunctional patterning of mixed monolayer surfaces using scanning probe lithography for multiplexed directed assembly. J Am Chem Soc 132:6890–6891CrossRef Unruh DA, Mauldin C, Pastine SJ, Rolandi M, Fréchet JMJ (2010) Bifunctional patterning of mixed monolayer surfaces using scanning probe lithography for multiplexed directed assembly. J Am Chem Soc 132:6890–6891CrossRef
18.
go back to reference Lei Y, Yang S, Wu M, Wilde G (2011) Surface patterning using templates: concept, properties and device applications. Chem Soc Rev 40:1247–1258CrossRef Lei Y, Yang S, Wu M, Wilde G (2011) Surface patterning using templates: concept, properties and device applications. Chem Soc Rev 40:1247–1258CrossRef
19.
go back to reference Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894CrossRef Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894CrossRef
20.
go back to reference Saavedra HM, Mullen TJ, Zhang P, Dewey DC, Claridge SA, Weiss PS (2010) Hybrid strategies in nanolithography. Rep Prog Phys 73:036501CrossRef Saavedra HM, Mullen TJ, Zhang P, Dewey DC, Claridge SA, Weiss PS (2010) Hybrid strategies in nanolithography. Rep Prog Phys 73:036501CrossRef
21.
go back to reference Moreno-Flores S, Toca-Herrera JL (2013) Hybridizing surface probe microcopies: towards a full description of the meso- and nanoworlds. CRC Press/Taylor & Francis Group, New York Moreno-Flores S, Toca-Herrera JL (2013) Hybridizing surface probe microcopies: towards a full description of the meso- and nanoworlds. CRC Press/Taylor & Francis Group, New York
22.
go back to reference Abraham DW, Mamin HJ, Ganz E, Clarke J (1986) Surface modification with the scanning tunneling microscope. IBM J Res Dev 30:492–499CrossRef Abraham DW, Mamin HJ, Ganz E, Clarke J (1986) Surface modification with the scanning tunneling microscope. IBM J Res Dev 30:492–499CrossRef
23.
go back to reference McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B 4:86–88CrossRef McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B 4:86–88CrossRef
24.
go back to reference McCord MA, Pease RFW (1987) Exposure of calcium-fluoride resist with the scanning tunneling microscope. J Vac Sci Technol B 5:430–433CrossRef McCord MA, Pease RFW (1987) Exposure of calcium-fluoride resist with the scanning tunneling microscope. J Vac Sci Technol B 5:430–433CrossRef
25.
go back to reference McCord MA, Kern DP, Chang THP (1988) Direct deposition of 10-nm metallic features with the scanning tunneling microscope. J Vac Sci Technol B 6:1877–1880CrossRef McCord MA, Kern DP, Chang THP (1988) Direct deposition of 10-nm metallic features with the scanning tunneling microscope. J Vac Sci Technol B 6:1877–1880CrossRef
26.
go back to reference Dagata JA, Schneir J, Harary HH, Evans CJ, Postek MT, Bennett J (1990) Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl Phys Lett 56:2001–2003CrossRef Dagata JA, Schneir J, Harary HH, Evans CJ, Postek MT, Bennett J (1990) Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl Phys Lett 56:2001–2003CrossRef
27.
go back to reference Snow ES, Campbell PM (1994) Fabrication of Si nanostructures with an atomic-force microscope. Appl Phys Lett 64:1932–1934CrossRef Snow ES, Campbell PM (1994) Fabrication of Si nanostructures with an atomic-force microscope. Appl Phys Lett 64:1932–1934CrossRef
28.
go back to reference Sheats JR, Smith BW (eds) (1998) Microlithography: science and technology. Dekker, New York Sheats JR, Smith BW (eds) (1998) Microlithography: science and technology. Dekker, New York
29.
go back to reference Cappella B, Sturm H (2002) Comparison between dynamic plowing lithography and nanoindentation methods. J Appl Phys 91:506–512CrossRef Cappella B, Sturm H (2002) Comparison between dynamic plowing lithography and nanoindentation methods. J Appl Phys 91:506–512CrossRef
30.
go back to reference Iwasaki H, Yoshinobu T, Sudoh K (2003) Nanolithography on SiO2/Si with a scanning tunnelling microscope. Nanotechnology 14:R55–R62CrossRef Iwasaki H, Yoshinobu T, Sudoh K (2003) Nanolithography on SiO2/Si with a scanning tunnelling microscope. Nanotechnology 14:R55–R62CrossRef
31.
go back to reference Sugimoto Y, Abe M, Hirayama S, Oyabu N, Custance O, Morita S (2005) Atom inlays performed at room temperature using atomic force microscopy. Nat Mater 4:156–159CrossRef Sugimoto Y, Abe M, Hirayama S, Oyabu N, Custance O, Morita S (2005) Atom inlays performed at room temperature using atomic force microscopy. Nat Mater 4:156–159CrossRef
32.
go back to reference Sykes ECH, Fernandez-Torres LC, Nanayakkara SU, Mantooth BA, Nevin RM, Weiss PS (2005) Observation and manipulation of subsurface hydride in Pd{111} and its effect on surface chemical, physical, and electronic properties. Proc Natl Acad Sci USA 102:17907–17911CrossRef Sykes ECH, Fernandez-Torres LC, Nanayakkara SU, Mantooth BA, Nevin RM, Weiss PS (2005) Observation and manipulation of subsurface hydride in Pd{111} and its effect on surface chemical, physical, and electronic properties. Proc Natl Acad Sci USA 102:17907–17911CrossRef
33.
go back to reference Li Y, Maynor BW, Liu J (2001) Electrochemical AFM ‘dip-pen’ nanolithography. J Am Chem Soc 123:2105–2106CrossRef Li Y, Maynor BW, Liu J (2001) Electrochemical AFM ‘dip-pen’ nanolithography. J Am Chem Soc 123:2105–2106CrossRef
34.
go back to reference Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43:30–45CrossRef Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43:30–45CrossRef
35.
go back to reference Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-Pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223CrossRef Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-Pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223CrossRef
36.
go back to reference Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660CrossRef Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660CrossRef
37.
go back to reference Wadu-Mesthrige K, Amro NA, Garno JC, Xu S, Liu G-Y (2001) Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Biophys J 80:1891–1899CrossRef Wadu-Mesthrige K, Amro NA, Garno JC, Xu S, Liu G-Y (2001) Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Biophys J 80:1891–1899CrossRef
38.
go back to reference Shi J, Chen J, Cremer PS (2008) Sub-100 nm of supported bilayers by nanoshaving lithography. J Am Chem Soc 130:2718–2719CrossRef Shi J, Chen J, Cremer PS (2008) Sub-100 nm of supported bilayers by nanoshaving lithography. J Am Chem Soc 130:2718–2719CrossRef
39.
go back to reference Sun S, Chong KSL, Leggett GJ (2002) Nanoscale molecular patterns fabricated by using scanning near-field optical lithography. J Am Chem Soc 124:2414–2415CrossRef Sun S, Chong KSL, Leggett GJ (2002) Nanoscale molecular patterns fabricated by using scanning near-field optical lithography. J Am Chem Soc 124:2414–2415CrossRef
40.
go back to reference Sun S, Leggett GJ (2002) Generation of nanostructures by scanning near-field photolithography of self-assembled monolayers and wet chemical etching. Nano Lett 2:1223–1227CrossRef Sun S, Leggett GJ (2002) Generation of nanostructures by scanning near-field photolithography of self-assembled monolayers and wet chemical etching. Nano Lett 2:1223–1227CrossRef
41.
go back to reference Sun S, Leggett GJ (2004) Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett 4:1381–1384CrossRef Sun S, Leggett GJ (2004) Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett 4:1381–1384CrossRef
42.
go back to reference Ul-Haq E, Liu Z, Zhang Y, Ahmad SAA, Wong L-S, Armes SP, Hobbs JK, Leggett G, Micklefield J, Roberts CJ, Weaver JMR (2010) Parallel scanning near-field photolithography: the snomipede. Nano Lett 10:4375–4380CrossRef Ul-Haq E, Liu Z, Zhang Y, Ahmad SAA, Wong L-S, Armes SP, Hobbs JK, Leggett G, Micklefield J, Roberts CJ, Weaver JMR (2010) Parallel scanning near-field photolithography: the snomipede. Nano Lett 10:4375–4380CrossRef
43.
go back to reference Leggett GJ (2012) Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms. Nanoscale 4:1840–1855CrossRef Leggett GJ (2012) Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms. Nanoscale 4:1840–1855CrossRef
44.
go back to reference Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84:1343–1381CrossRef Bonnell DA, Basov DN, Bode M, Diebold U, Kalinin SV, Madhavan V, Novotny L, Salmeron M, Schwarz UD, Weiss PS (2012) Imaging physical phenomena with local probes: from electrons to photons. Rev Mod Phys 84:1343–1381CrossRef
45.
go back to reference Bonnell DA, Kalinin SV (2013) Scanning probe microscopy for energy research. World Scientific, SingaporeCrossRef Bonnell DA, Kalinin SV (2013) Scanning probe microscopy for energy research. World Scientific, SingaporeCrossRef
46.
go back to reference Tawfick S, Volder MD, Copic D, Park SJ, Oliver CR, Polsen ES, Roberts MJ, Hart AJ (2012) Engineering of micro- and nano structured surfaces with anisotropic geometries and properties. Adv Mater 24:1628–1674CrossRef Tawfick S, Volder MD, Copic D, Park SJ, Oliver CR, Polsen ES, Roberts MJ, Hart AJ (2012) Engineering of micro- and nano structured surfaces with anisotropic geometries and properties. Adv Mater 24:1628–1674CrossRef
47.
go back to reference Scappucci G, Capellini G, Johnston B, Klesse WM, Miwa JA, Simmons MY (2011) A complete fabrication route for atomic-scale donor-based devices in single-crystal Germanium. Nano Lett 11:2272–2279CrossRef Scappucci G, Capellini G, Johnston B, Klesse WM, Miwa JA, Simmons MY (2011) A complete fabrication route for atomic-scale donor-based devices in single-crystal Germanium. Nano Lett 11:2272–2279CrossRef
48.
go back to reference Scappucci G, Capellini G, Lee WCT, Simmons MY (2009) Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy. Nanotechnology 20:495302 (6 pp)CrossRef Scappucci G, Capellini G, Lee WCT, Simmons MY (2009) Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy. Nanotechnology 20:495302 (6 pp)CrossRef
49.
go back to reference van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA (2005) Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett 5:1303–1307CrossRef van Dorp WF, van Someren B, Hagen CW, Kruit P, Crozier PA (2005) Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nano Lett 5:1303–1307CrossRef
50.
go back to reference van Dorp WF, Hagen CW, Crozier PA, Kruit P (2008) Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition. Nanotechnology 19:225305 (9 pp)CrossRef van Dorp WF, Hagen CW, Crozier PA, Kruit P (2008) Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition. Nanotechnology 19:225305 (9 pp)CrossRef
51.
go back to reference Fuechsle M, Miwa JA, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg LCL, Klimeck G, Simmons MY (2012) A single-atom transistor. Nat Nanotechnol 7:242CrossRef Fuechsle M, Miwa JA, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg LCL, Klimeck G, Simmons MY (2012) A single-atom transistor. Nat Nanotechnol 7:242CrossRef
52.
go back to reference Utke I, Moshkalev S, Russel P (eds) (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, New York Utke I, Moshkalev S, Russel P (eds) (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, New York
53.
go back to reference Manfrinato VR, Zhang L, Su D, Duan H, Hobbs RG, Stach EA, Berggren KK (2013) Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 13:1555–1558CrossRef Manfrinato VR, Zhang L, Su D, Duan H, Hobbs RG, Stach EA, Berggren KK (2013) Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 13:1555–1558CrossRef
54.
go back to reference Donev EU, Hastings JT (2009) Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett 9:2715–2718CrossRef Donev EU, Hastings JT (2009) Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett 9:2715–2718CrossRef
55.
go back to reference Donev EU, Hastings JT (2009) Liquid-precursor electron-beam-induced deposition of Pt nanostructures: dose, proximity, resolution. Nanotechnology 20:505302 (7 pp)CrossRef Donev EU, Hastings JT (2009) Liquid-precursor electron-beam-induced deposition of Pt nanostructures: dose, proximity, resolution. Nanotechnology 20:505302 (7 pp)CrossRef
56.
go back to reference Donev EU, Nehru N, Schardein G, Wright J, Chamberlain A, Samantaray CB, Hastings JT (2011) Recent advances in liquid-phase electron-beam induced deposition: characterizing growth processes and optical properties. Microsc Microanal 17:438CrossRef Donev EU, Nehru N, Schardein G, Wright J, Chamberlain A, Samantaray CB, Hastings JT (2011) Recent advances in liquid-phase electron-beam induced deposition: characterizing growth processes and optical properties. Microsc Microanal 17:438CrossRef
57.
go back to reference Donev EU, Schardein G, Wright JC, Hastings JT (2011) Substrate effects on the electron- beam-induced deposition of platinum from a liquid precursor. Nanoscale 3:2709–2717CrossRef Donev EU, Schardein G, Wright JC, Hastings JT (2011) Substrate effects on the electron- beam-induced deposition of platinum from a liquid precursor. Nanoscale 3:2709–2717CrossRef
58.
go back to reference Schardein G, Donev EU, Hastings JT (2011) Electron-beam-induced deposition of gold from aqueous solutions. Nanotechnology 22:015301CrossRef Schardein G, Donev EU, Hastings JT (2011) Electron-beam-induced deposition of gold from aqueous solutions. Nanotechnology 22:015301CrossRef
59.
go back to reference Hoshino T, Morishima K (2011) Electron-beam direct processing on living cell membrane. Appl Phys Lett 99:174102–1CrossRef Hoshino T, Morishima K (2011) Electron-beam direct processing on living cell membrane. Appl Phys Lett 99:174102–1CrossRef
60.
go back to reference Ocola LE, Joshi-Imre A, Kessel C, Chen B, Park J, Gosztola D, Divan R (2012) Growth characterization of electron-beam-induced silver deposition from liquid precursor. J Vac Sci Technol B 30:06FF08-07CrossRef Ocola LE, Joshi-Imre A, Kessel C, Chen B, Park J, Gosztola D, Divan R (2012) Growth characterization of electron-beam-induced silver deposition from liquid precursor. J Vac Sci Technol B 30:06FF08-07CrossRef
61.
go back to reference Liu Y, Chen X, Noh KW, Dillon SJ (2012) Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology 23:385302CrossRef Liu Y, Chen X, Noh KW, Dillon SJ (2012) Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology 23:385302CrossRef
62.
go back to reference Bresin M, Chamberlain A, Donev EU, Samantaray CB, Schardein GS, Hastings JT (2013) Electron-beam induced deposition of bimetallic nanostructures from bulk liquids. Angew Chem Int Ed 52:1–5CrossRef Bresin M, Chamberlain A, Donev EU, Samantaray CB, Schardein GS, Hastings JT (2013) Electron-beam induced deposition of bimetallic nanostructures from bulk liquids. Angew Chem Int Ed 52:1–5CrossRef
63.
go back to reference Donev EU, Samantaray CB, Bresin M, Hastings JT (2013) Recent advances in liquid phase electron beam induced processing, silicon nitride etching and palladium deposition. In: Proceedings of the 39th international conference on micro and nano engineering (MNE), 16–19 Sept London, UK, 2013 Donev EU, Samantaray CB, Bresin M, Hastings JT (2013) Recent advances in liquid phase electron beam induced processing, silicon nitride etching and palladium deposition. In: Proceedings of the 39th international conference on micro and nano engineering (MNE), 16–19 Sept London, UK, 2013
64.
go back to reference Bresin M, Nehru N, Hastings JT (2013) Focused electron-beam induced deposition of plasmonic nanostructures from aqueous solutions. Proc SPIE 8613:861306CrossRef Bresin M, Nehru N, Hastings JT (2013) Focused electron-beam induced deposition of plasmonic nanostructures from aqueous solutions. Proc SPIE 8613:861306CrossRef
65.
go back to reference Giam LR, He S, Horwitz NE, Eichelsdoerfer DJ, Chai J, Zheng Z, Kim D, Shim W, Mirkin CA (2012) Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography. Nano Lett 12:1022–1025CrossRef Giam LR, He S, Horwitz NE, Eichelsdoerfer DJ, Chai J, Zheng Z, Kim D, Shim W, Mirkin CA (2012) Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography. Nano Lett 12:1022–1025CrossRef
66.
go back to reference Ganesh M, Nachman J, Mao Z, Lyons A, Rafailovich M, Gross R (2013) Patterned enzymatic degradation of poly (ε-caprolactone) by high-affinity microcontact printing and polymer pen lithography. Biomacromolecules 14:2470–2476CrossRef Ganesh M, Nachman J, Mao Z, Lyons A, Rafailovich M, Gross R (2013) Patterned enzymatic degradation of poly (ε-caprolactone) by high-affinity microcontact printing and polymer pen lithography. Biomacromolecules 14:2470–2476CrossRef
67.
go back to reference Tang Z, Wei Q, Wei A (2011) Metal-mesh lithography. ACS Appl Mater Interfaces 3:4812–4818CrossRef Tang Z, Wei Q, Wei A (2011) Metal-mesh lithography. ACS Appl Mater Interfaces 3:4812–4818CrossRef
68.
go back to reference Duvigneau J, Schönherr H, Vancso GJ (2011) Scanning thermal lithography of tailored tert-Butyl ester protected carboxylic acid functionalized (Meth) acrylate polymer platforms. ACS Appl Mater Interfaces 3:3855–3865CrossRef Duvigneau J, Schönherr H, Vancso GJ (2011) Scanning thermal lithography of tailored tert-Butyl ester protected carboxylic acid functionalized (Meth) acrylate polymer platforms. ACS Appl Mater Interfaces 3:3855–3865CrossRef
69.
go back to reference McConney ME, Kulkarni DD, Jiang H, Bunning TJ, Tsukruk VV (2012) A new twist on scanning thermal microscopy. Nano Lett 12:1218–1223CrossRef McConney ME, Kulkarni DD, Jiang H, Bunning TJ, Tsukruk VV (2012) A new twist on scanning thermal microscopy. Nano Lett 12:1218–1223CrossRef
70.
go back to reference Fan F-RF, Bard A (1995) STM on wet insulators: electrochemistry or tunneling. Science 270:1849–1851CrossRef Fan F-RF, Bard A (1995) STM on wet insulators: electrochemistry or tunneling. Science 270:1849–1851CrossRef
71.
go back to reference Lipson AL, Hersam MC (2013) Conductive scanning probe characterization and nanopatterning of electronic and energy materials. J Phys Chem C 117:7953–7963CrossRef Lipson AL, Hersam MC (2013) Conductive scanning probe characterization and nanopatterning of electronic and energy materials. J Phys Chem C 117:7953–7963CrossRef
72.
go back to reference Ryu YK, Chiesa M, Garcia R (2013) Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 24:315205 (7 pp)CrossRef Ryu YK, Chiesa M, Garcia R (2013) Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies. Nanotechnology 24:315205 (7 pp)CrossRef
73.
go back to reference Dehzangi A, Larki F, Hutagalung SD, Naseri MG, Majlis BY, Navasery M, Hamid NA, Noor MM (2013) Impact of parameter variation in fabrication of nanostructure by atomic force microscopy nanolithography. PLOSONE 8:e65409CrossRef Dehzangi A, Larki F, Hutagalung SD, Naseri MG, Majlis BY, Navasery M, Hamid NA, Noor MM (2013) Impact of parameter variation in fabrication of nanostructure by atomic force microscopy nanolithography. PLOSONE 8:e65409CrossRef
74.
go back to reference Haussmann A, Milde P, Erler C, Eng LM (2009) Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. Nano Lett 9:763–768CrossRef Haussmann A, Milde P, Erler C, Eng LM (2009) Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. Nano Lett 9:763–768CrossRef
75.
go back to reference Domanski L, Sengupta E, Bley K, Untch MB, Weber SAL, Landfester K, Weiss CK, Butt H-J, Berger R (2012) Kelvin probe force microscopy in nonpolar liquids. Langmuir 28:13892–13899CrossRef Domanski L, Sengupta E, Bley K, Untch MB, Weber SAL, Landfester K, Weiss CK, Butt H-J, Berger R (2012) Kelvin probe force microscopy in nonpolar liquids. Langmuir 28:13892–13899CrossRef
76.
go back to reference Gong J, Lipomi DJ, Deng J, Nie Z, Chen X, Randall NX, Nair R, Whitesides GM (2010) Micro- and nanopatterning of inorganic and polymeric substrates by indentation lithography. Nano Lett 10:2702–2708CrossRef Gong J, Lipomi DJ, Deng J, Nie Z, Chen X, Randall NX, Nair R, Whitesides GM (2010) Micro- and nanopatterning of inorganic and polymeric substrates by indentation lithography. Nano Lett 10:2702–2708CrossRef
77.
go back to reference Nedev S, Urban AS, Lutich AA, Feldmann J (2011) Optical force stamping lithography. Nano Lett 11:5066–5070CrossRef Nedev S, Urban AS, Lutich AA, Feldmann J (2011) Optical force stamping lithography. Nano Lett 11:5066–5070CrossRef
78.
go back to reference Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF, Grumstrup EM, Mehl BP, Cating EEM, Cahoon JF, Papanikolas JM (2013) Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femto second pump − probe microscopy. Nano Lett 13:1336–1340CrossRef Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF, Grumstrup EM, Mehl BP, Cating EEM, Cahoon JF, Papanikolas JM (2013) Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femto second pump − probe microscopy. Nano Lett 13:1336–1340CrossRef
79.
go back to reference Zarzar LD, Swartzentruber BS, Harper JC, Dunphy DR, Brinker CJ, Aizenberg J, Kaehr B (2012) Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. J Am Chem Soc 134:4007–4010CrossRef Zarzar LD, Swartzentruber BS, Harper JC, Dunphy DR, Brinker CJ, Aizenberg J, Kaehr B (2012) Multiphoton lithography of nanocrystalline platinum and palladium for site-specific catalysis in 3D microenvironments. J Am Chem Soc 134:4007–4010CrossRef
80.
go back to reference Credgington D, Fenwick O, Charas A, Morgado J, Suhling K, Cacialli F (2010) High-resolution scanning near-field optical lithography of conjugated polymers. Adv Funct Mater 20:2842–2847CrossRef Credgington D, Fenwick O, Charas A, Morgado J, Suhling K, Cacialli F (2010) High-resolution scanning near-field optical lithography of conjugated polymers. Adv Funct Mater 20:2842–2847CrossRef
81.
go back to reference Ul-Haq E, Patole S, Moxey M, Amstad E, Vasilev C, Hunter CN, Leggett GJ, Spencer ND, Williams NH (2013) Photocatalytic nanolithography of self-assembled monolayers and proteins. ACS Nano 7(9):7610–7618CrossRef Ul-Haq E, Patole S, Moxey M, Amstad E, Vasilev C, Hunter CN, Leggett GJ, Spencer ND, Williams NH (2013) Photocatalytic nanolithography of self-assembled monolayers and proteins. ACS Nano 7(9):7610–7618CrossRef
82.
go back to reference van Dorp WF, Zhang X, Feringa BL, Hansen TW, Wagner JB, Hosson JTMD (2012) Molecule-by-molecule writing using a focused electron beam. ACS Nano 6:10076–10081CrossRef van Dorp WF, Zhang X, Feringa BL, Hansen TW, Wagner JB, Hosson JTMD (2012) Molecule-by-molecule writing using a focused electron beam. ACS Nano 6:10076–10081CrossRef
83.
go back to reference Roberts NA, Fowlkes JD, Magel GA, Rack PD (2013) Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum. Nanoscale 5:408–415CrossRef Roberts NA, Fowlkes JD, Magel GA, Rack PD (2013) Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum. Nanoscale 5:408–415CrossRef
84.
go back to reference Wu T-H, Lu H-H, Lin C-W (2012) Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography. Langmuir 28:14509–14513CrossRef Wu T-H, Lu H-H, Lin C-W (2012) Dependence of transport rate on area of lithography and pretreatment of tip in dip-pen nanolithography. Langmuir 28:14509–14513CrossRef
85.
go back to reference Shim W, Brown KA, Zhou X, Rasin B, Liao X, Mirkin CA (2012) Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene. Proc Natl Acad Sci U S A 109:18312–18317CrossRef Shim W, Brown KA, Zhou X, Rasin B, Liao X, Mirkin CA (2012) Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene. Proc Natl Acad Sci U S A 109:18312–18317CrossRef
86.
go back to reference Narui Y, Salaita KS (2012) Dip-pen nanolithography of optically transparent cationic polymers to manipulate spatial organization of proteolipid membranes. Chem Sci 3:794–799CrossRef Narui Y, Salaita KS (2012) Dip-pen nanolithography of optically transparent cationic polymers to manipulate spatial organization of proteolipid membranes. Chem Sci 3:794–799CrossRef
87.
go back to reference Chang JB, Son JG, Hannon AF, Alexander-Katz A, Ross CA, Berggren KK (2012) Aligned sub-10-nm block copolymer patterns templated by post arrays. ACS Nano 6:2071–2077CrossRef Chang JB, Son JG, Hannon AF, Alexander-Katz A, Ross CA, Berggren KK (2012) Aligned sub-10-nm block copolymer patterns templated by post arrays. ACS Nano 6:2071–2077CrossRef
88.
go back to reference Mickiewicz RA, Yang JKW, Hannon AF, Jung YS, Alexander-Katz A, Berggren KK, Ross CA (2010) Enhancing the potential of block copolymer lithography with polymer self-consistent field theory simulations. Macromolecules 43:8290–8295CrossRef Mickiewicz RA, Yang JKW, Hannon AF, Jung YS, Alexander-Katz A, Berggren KK, Ross CA (2010) Enhancing the potential of block copolymer lithography with polymer self-consistent field theory simulations. Macromolecules 43:8290–8295CrossRef
89.
go back to reference Son JG, Chang JB, Berggren KK, Ross CA (2011) Assembly of sub-10-nm block copolymer patterns with mixed morphology and period using electron irradiation and solvent annealing. Nano Lett 11:5079–5084CrossRef Son JG, Chang JB, Berggren KK, Ross CA (2011) Assembly of sub-10-nm block copolymer patterns with mixed morphology and period using electron irradiation and solvent annealing. Nano Lett 11:5079–5084CrossRef
90.
go back to reference Jeong S–J, Kim JY, Kim BH, Moon H–S, Kim SO (2013) Directed self-assembly of block copolymers for next generation nanolithography. Mater Today 16:468–473CrossRef Jeong S–J, Kim JY, Kim BH, Moon H–S, Kim SO (2013) Directed self-assembly of block copolymers for next generation nanolithography. Mater Today 16:468–473CrossRef
91.
go back to reference Huang C-M, Yeh C-H, Chen L, Huang D–A, Kuo C (2013) Energetic-assisted scanning thermal lithography for patterning silver nanoparticles in polymer films. ACS Appl Mater Interfaces 5:120–127CrossRef Huang C-M, Yeh C-H, Chen L, Huang D–A, Kuo C (2013) Energetic-assisted scanning thermal lithography for patterning silver nanoparticles in polymer films. ACS Appl Mater Interfaces 5:120–127CrossRef
92.
go back to reference Cheong LL, Paul P, Holzner F, Despont M, Coady DJ, Hedrick JL, Allen R, Knoll AW, Duerig U (2013) Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. Nano Lett 13:4485–4491CrossRef Cheong LL, Paul P, Holzner F, Despont M, Coady DJ, Hedrick JL, Allen R, Knoll AW, Duerig U (2013) Thermal probe maskless lithography for 27.5 nm half-pitch Si technology. Nano Lett 13:4485–4491CrossRef
93.
go back to reference Craston DH, Lin CW, Bard AJ (1988) High resolution deposition of silver in Nafion films with the scanning tunneling microscope. J Electrochem Soc 135(3):785–786CrossRef Craston DH, Lin CW, Bard AJ (1988) High resolution deposition of silver in Nafion films with the scanning tunneling microscope. J Electrochem Soc 135(3):785–786CrossRef
94.
go back to reference Kolb DM, Ullmann R, Will T (1997) Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope. Science 275:1097–1099CrossRef Kolb DM, Ullmann R, Will T (1997) Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope. Science 275:1097–1099CrossRef
95.
go back to reference Ullmann R, Will T, Kolb DM (1993) Nanoscale decoration of Au (111) electrodes with Cu clusters by an STM. Chem Phys Lett 209:238–242CrossRef Ullmann R, Will T, Kolb DM (1993) Nanoscale decoration of Au (111) electrodes with Cu clusters by an STM. Chem Phys Lett 209:238–242CrossRef
96.
go back to reference Maynor BW, Li Y, Liu J (2001) Au “Ink” for AFM “Dip-Pen” nanolithography. Langmuir 17:2575–2578CrossRef Maynor BW, Li Y, Liu J (2001) Au “Ink” for AFM “Dip-Pen” nanolithography. Langmuir 17:2575–2578CrossRef
97.
go back to reference Kwon G, Chu H, Yoo J, Kim H, Han C, Chung C, Lee J, Lee H (2012) Fabrication of uniform and high resolution copper nanowire using intermediate self-assembled monolayers through direct AFM lithography. Nanotechnology 23:185307CrossRef Kwon G, Chu H, Yoo J, Kim H, Han C, Chung C, Lee J, Lee H (2012) Fabrication of uniform and high resolution copper nanowire using intermediate self-assembled monolayers through direct AFM lithography. Nanotechnology 23:185307CrossRef
98.
go back to reference Li W, Virtanen JA, Penner RM (1992) Nanometer‐scale electrochemical deposition of silver on graphite using a scanning tunneling microscope. Appl Phys Lett 60:1181CrossRef Li W, Virtanen JA, Penner RM (1992) Nanometer‐scale electrochemical deposition of silver on graphite using a scanning tunneling microscope. Appl Phys Lett 60:1181CrossRef
99.
go back to reference Losilla NS, Oxtoby NS, Martinez J, Garcia F, Garcia R, Torrent MM, Veciana J, Rovira C (2008) Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19:455308 (6 pp)CrossRef Losilla NS, Oxtoby NS, Martinez J, Garcia F, Garcia R, Torrent MM, Veciana J, Rovira C (2008) Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19:455308 (6 pp)CrossRef
100.
go back to reference Chiesa M, Garcia R (2010) Nanoscale space charge generation in local oxidation nanolithography. Appl Phys Lett 96:263112CrossRef Chiesa M, Garcia R (2010) Nanoscale space charge generation in local oxidation nanolithography. Appl Phys Lett 96:263112CrossRef
101.
go back to reference Garcia R, Martinez RV, Martínez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35:29–38CrossRef Garcia R, Martinez RV, Martínez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35:29–38CrossRef
102.
go back to reference Martínez RV, Martínez J, Garcia R (2010) Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21:245301 (5 pp)CrossRef Martínez RV, Martínez J, Garcia R (2010) Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21:245301 (5 pp)CrossRef
103.
go back to reference Martinez J, Losilla NS, Biscarini F, Schmidt G, Borzenko T, Molenkamp LW, Garcia R (2006) Development of a parallel local oxidation nanolithography instrument. Rev Sci Instrum 77:086106-1-3CrossRef Martinez J, Losilla NS, Biscarini F, Schmidt G, Borzenko T, Molenkamp LW, Garcia R (2006) Development of a parallel local oxidation nanolithography instrument. Rev Sci Instrum 77:086106-1-3CrossRef
104.
go back to reference Martínez RV, García F, García R, Coronado E, Aliaga AF, Romero FM, Tatay S (2007) Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv Mater 19:291–295CrossRef Martínez RV, García F, García R, Coronado E, Aliaga AF, Romero FM, Tatay S (2007) Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv Mater 19:291–295CrossRef
105.
go back to reference Lee JS, Chi YS, Choi IS, Kim J (2012) Local scanning probe polymerization of an organic monolayer covalently grafted on silicon. Langmuir 28:14496–14501CrossRef Lee JS, Chi YS, Choi IS, Kim J (2012) Local scanning probe polymerization of an organic monolayer covalently grafted on silicon. Langmuir 28:14496–14501CrossRef
106.
go back to reference König T, Papke T, Kopyshev A, Santer S (2013) Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips. J Mater Sci 48:3863–3869CrossRef König T, Papke T, Kopyshev A, Santer S (2013) Atomic force microscopy nanolithography: fabrication of metallic nano-slits using silicon nitride tips. J Mater Sci 48:3863–3869CrossRef
107.
go back to reference Jarro CA, Donev EU, Menguç MP, Hastings JT (2012) Silver patterning using an atomic force microscope tip and laser-induced chemical deposition from liquids. J Vac Sci Tech B 30:06FD02-6CrossRef Jarro CA, Donev EU, Menguç MP, Hastings JT (2012) Silver patterning using an atomic force microscope tip and laser-induced chemical deposition from liquids. J Vac Sci Tech B 30:06FD02-6CrossRef
108.
go back to reference Hawes EA, Hastings JT, Crofcheck C, Mengüç MP (2008) Spatially selective melting and evaporation of nanosized gold particles. Opt Lett 33:1383–1385CrossRef Hawes EA, Hastings JT, Crofcheck C, Mengüç MP (2008) Spatially selective melting and evaporation of nanosized gold particles. Opt Lett 33:1383–1385CrossRef
109.
go back to reference Zubir OE, Barlow I, Haq EU, Tajuddin HA, Williams NH, Leggett GJ (2013) Generic methods for micrometer- and nanometer-sale surface derivatization based on photochemical coupling of primary amines to monolayers of aryl azides on gold and aluminum oxide surfaces. Langmuir 29:1083–1092CrossRef Zubir OE, Barlow I, Haq EU, Tajuddin HA, Williams NH, Leggett GJ (2013) Generic methods for micrometer- and nanometer-sale surface derivatization based on photochemical coupling of primary amines to monolayers of aryl azides on gold and aluminum oxide surfaces. Langmuir 29:1083–1092CrossRef
110.
go back to reference Tizazu G, Adawi AM, Leggett GJ, Lidzey DG (2009) Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium. Langmuir 25(18):10746–10753CrossRef Tizazu G, Adawi AM, Leggett GJ, Lidzey DG (2009) Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium. Langmuir 25(18):10746–10753CrossRef
111.
go back to reference Dostert KH, Álvarez M, Koynov K, del Campo A, Butt HJ, Kreiter M (2012) Near field guided chemical nanopatterning. Langmuir 28:3699–3703CrossRef Dostert KH, Álvarez M, Koynov K, del Campo A, Butt HJ, Kreiter M (2012) Near field guided chemical nanopatterning. Langmuir 28:3699–3703CrossRef
112.
go back to reference Lin WF, Li JR, Liu GY (2012) Near-field scanning optical microscopy enables direct observation of Moiré effects at the nanometer scale. ACS Nano 6:9141–9149CrossRef Lin WF, Li JR, Liu GY (2012) Near-field scanning optical microscopy enables direct observation of Moiré effects at the nanometer scale. ACS Nano 6:9141–9149CrossRef
113.
go back to reference Samantaray CB, Hastings JT (2009) Amino-propyl-triethoxy-silane (APTES) on aluminum fiducial grids for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 27:2558CrossRef Samantaray CB, Hastings JT (2009) Amino-propyl-triethoxy-silane (APTES) on aluminum fiducial grids for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 27:2558CrossRef
114.
go back to reference Samantaray CB, Todd Hastings J (2008) Self-assembled monolayer fiducial grids for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 26:2351CrossRef Samantaray CB, Todd Hastings J (2008) Self-assembled monolayer fiducial grids for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 26:2351CrossRef
115.
go back to reference Samantaray CB, Hastings JT (2011) Deep UV patterning of 3-amino-propyl-triethoxy-silane self-assembled molecular layers on alumina. J Vac Sci Technol B 29:041603CrossRef Samantaray CB, Hastings JT (2011) Deep UV patterning of 3-amino-propyl-triethoxy-silane self-assembled molecular layers on alumina. J Vac Sci Technol B 29:041603CrossRef
116.
go back to reference Cheong LL, Lobez JM, Moon EE, Hastings JT, Smith HI (2011) Secondary-electron signal level measurements of self-assembled monolayers for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 29:06F308CrossRef Cheong LL, Lobez JM, Moon EE, Hastings JT, Smith HI (2011) Secondary-electron signal level measurements of self-assembled monolayers for spatial-phase-locked electron-beam lithography. J Vac Sci Technol B 29:06F308CrossRef
117.
go back to reference Jung YS, Chang JB, Verploegen E, Berggren KK, Ross CA (2010) A path to ultranarrow patterns using self-assembled lithography. Nano Lett 10:1000–1005CrossRef Jung YS, Chang JB, Verploegen E, Berggren KK, Ross CA (2010) A path to ultranarrow patterns using self-assembled lithography. Nano Lett 10:1000–1005CrossRef
118.
go back to reference Rosenberg SG, Barclay M, Fairbrother DH (2013) Electron induced reactions of surface adsorbed tungsten hexacarbonyl W (CO)6. Phys Chem Chem Phys 15:4002–4015CrossRef Rosenberg SG, Barclay M, Fairbrother DH (2013) Electron induced reactions of surface adsorbed tungsten hexacarbonyl W (CO)6. Phys Chem Chem Phys 15:4002–4015CrossRef
119.
go back to reference Böhler E, Warneke J, Swiderek P (2013) Control of chemical reactions and synthesis by low-energy electrons. Chem Soc Rev 42:9219–9231CrossRef Böhler E, Warneke J, Swiderek P (2013) Control of chemical reactions and synthesis by low-energy electrons. Chem Soc Rev 42:9219–9231CrossRef
120.
go back to reference Ramon LS, Cordoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, Teresa JMD (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5:7781–7787CrossRef Ramon LS, Cordoba R, Rodríguez LA, Magén C, Snoeck E, Gatel C, Serrano I, Ibarra MR, Teresa JMD (2011) Ultrasmall functional ferromagnetic nanostructures grown by focused electron-beam-induced deposition. ACS Nano 5:7781–7787CrossRef
121.
go back to reference van Oven JC, Berwald F, Berggren KK, Kruit P, Hagen CW (2011) Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si. J Vac Sci Technol B 29:06F305CrossRef van Oven JC, Berwald F, Berggren KK, Kruit P, Hagen CW (2011) Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si. J Vac Sci Technol B 29:06F305CrossRef
122.
go back to reference Hoshino T, Morishima K (2010) Electron beam induced in situ spatiotemporal nanofabrication towards intracellular nanorobotics. In: Proceedings of the 214th international conference on miniaturized systems for chemistry and life sciences, 3–7 Oct 2010, Groningen, p 1637 Hoshino T, Morishima K (2010) Electron beam induced in situ spatiotemporal nanofabrication towards intracellular nanorobotics. In: Proceedings of the 214th international conference on miniaturized systems for chemistry and life sciences, 3–7 Oct 2010, Groningen, p 1637
123.
go back to reference Mackus AJM, Thissen NFW, Mulders JJL, Trompenaars PHF, Verheijen MA, Bol AA, Kessels WMM (2013) Direct-write atomic layer deposition of high-quality Pt nanostructures: selective growth conditions and seed layer requirements. J Phys Chem C 117:10788–10798CrossRef Mackus AJM, Thissen NFW, Mulders JJL, Trompenaars PHF, Verheijen MA, Bol AA, Kessels WMM (2013) Direct-write atomic layer deposition of high-quality Pt nanostructures: selective growth conditions and seed layer requirements. J Phys Chem C 117:10788–10798CrossRef
124.
go back to reference Han A, Vlassarev D, Wang J, Golovchenko JA, Branton D (2010) Ice lithography for nanodevice. Nano Lett 10:5056–5059 Han A, Vlassarev D, Wang J, Golovchenko JA, Branton D (2010) Ice lithography for nanodevice. Nano Lett 10:5056–5059
125.
go back to reference Lee MH, Hwang CS (2011) Resistive switching memory: observations with scanning probe microscopy. Nanoscale 3:490–502CrossRef Lee MH, Hwang CS (2011) Resistive switching memory: observations with scanning probe microscopy. Nanoscale 3:490–502CrossRef
126.
go back to reference Kwon DH, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li XS, Park GS, Lee B, Han S, Kim M, Hwang CS (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5:148–153CrossRef Kwon DH, Kim KM, Jang JH, Jeon JM, Lee MH, Kim GH, Li XS, Park GS, Lee B, Han S, Kim M, Hwang CS (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5:148–153CrossRef
127.
go back to reference Balke N, Bonnell D, Ginger DS, Kemerink M (2012) Scanning probes for new energy materials: probing local structure and function. MRS Bull 37:633–641CrossRef Balke N, Bonnell D, Ginger DS, Kemerink M (2012) Scanning probes for new energy materials: probing local structure and function. MRS Bull 37:633–641CrossRef
128.
go back to reference O’Dea R, Brown LM, Hoepker N, Marohn JA, Sadewasser S (2012) Scanning probe microscopy of solar cells: from inorganic thin films to organic photovoltaics. MRS Bull 37:642–650CrossRef O’Dea R, Brown LM, Hoepker N, Marohn JA, Sadewasser S (2012) Scanning probe microscopy of solar cells: from inorganic thin films to organic photovoltaics. MRS Bull 37:642–650CrossRef
129.
go back to reference Jesse S, Kumar A, Arruda TM, Kim Y, Kalinin SV, Ciucci F (2012) Electrochemical strain microscopy: probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bull 37:651–658CrossRef Jesse S, Kumar A, Arruda TM, Kim Y, Kalinin SV, Ciucci F (2012) Electrochemical strain microscopy: probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bull 37:651–658CrossRef
130.
go back to reference Lee W, Prinz FB, Chen X, Nonnenmann S, Bonnell DA, O’Hayre RP (2012) Nanoscale impedance and complex properties in energy-related systems. MRS Bull 37:659–667CrossRef Lee W, Prinz FB, Chen X, Nonnenmann S, Bonnell DA, O’Hayre RP (2012) Nanoscale impedance and complex properties in energy-related systems. MRS Bull 37:659–667CrossRef
131.
go back to reference Lai SCS, Macpherson JV, Unwin PR (2012) In situ scanning electrochemical probe microscopy for energy applications. MRS Bull 37:668–676CrossRef Lai SCS, Macpherson JV, Unwin PR (2012) In situ scanning electrochemical probe microscopy for energy applications. MRS Bull 37:668–676CrossRef
132.
go back to reference Besenbacher F, Thostrup P, Salmero M (2012) The structure and reactivity of surfaces revealed by scanning tunneling microscopy. MRS Bull 37:677–681CrossRef Besenbacher F, Thostrup P, Salmero M (2012) The structure and reactivity of surfaces revealed by scanning tunneling microscopy. MRS Bull 37:677–681CrossRef
133.
go back to reference Park WI, You BK, Mun BH, Seo HK, Lee JY, Hosaka S, Yin Y, Ross CA, Lee KJ, Jung YS (2013) Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano 7:2651–2658CrossRef Park WI, You BK, Mun BH, Seo HK, Lee JY, Hosaka S, Yin Y, Ross CA, Lee KJ, Jung YS (2013) Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction. ACS Nano 7:2651–2658CrossRef
134.
go back to reference Olmos CM, Rasool HI, Weiller BH, Gimzewski JK (2013) Graphene MEMS: AFM probe performance improvement. ACS Nano 7(5):4164–4170CrossRef Olmos CM, Rasool HI, Weiller BH, Gimzewski JK (2013) Graphene MEMS: AFM probe performance improvement. ACS Nano 7(5):4164–4170CrossRef
135.
go back to reference Puddy RK, Chua CJ, Buitelaar MR (2013) Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl Phys Lett 103:183117CrossRef Puddy RK, Chua CJ, Buitelaar MR (2013) Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl Phys Lett 103:183117CrossRef
Metadata
Title
Scanning Probe Microscopy for Nanolithography
Author
C. B. Samantaray
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-44551-8_3

Premium Partners