Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

2. Scientific Background

Author : Dr. Jannis Lehmann

Published in: Toroidal Order in Magnetic Metamaterials

Publisher: Springer International Publishing

Abstract

The following Chapter introduces three main topics of my work: ferroic order, nanomagnetism and metamaterials. First, the concept of ferroic order is presented. A symmetry-based classification is given together with a brief discussion of phase transitions, the emergence of a ferroic order parameter, spontaneous domain formation and the manipulation of an order parameter with a conjugate field. This part closes by unravelling ferrotoroidicity. Second, magnetic properties of sub-micrometre-sized objects made from a ferromagnetic material are discussed. Here, the formation of different kinds of spin structures is explained that serve as building blocks of nanomagnetic arrays. The suppression or—more important here—the support of long-range order in extended magnetostatic-coupled arrays is explained. The third part of this Chapter introduces metamaterials, a class of matter that is assembled on length scales comparable with the wavelength of radiation that interacts with it and that provides design-determined novel material properties and functionalities.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
Since the spontaneous strain is described by a second-rank tensor instead of a vector, like for the other three primary ferroic states, it appears detached from them [17]. To circumvent this issue ferro-rotational order has been proposed recently as a replacement with a suitable symmetry and a vectorial order parameter [3234].
 
2
Generally, these exponents are expected to be of universal character and, as such, only dependent on global details of the investigated system like its physical dimension, or the range of the interaction.
 
3
For a more detailed study, energy contributions from the magnetic anisotropy (see Sect. 2.2), magnetostriction, strain, crystal defects and grains or annealing procedures have to be taken into account [5356].
 
4
Note that the so-called anapole moment, first mentioned already in 1958 [79] is a closely related term for the non-radiative mode of an electromagnetic excitation with the same symmetry.
 
5
Confusion arises, in this context, due to an assumed identity of a toroidally ordered single-phase ferroic state and a multiferroic state that exhibits a magnetisation perpendicularly aligned to an electric polarisation [156158]. The order in these magnetoelectric multiferroics, despite its potentially equivalent macroscopic symmetry, is not in agreement with the classification of the toroidal order as presented here [77], since it is neither magnetically compensated nor requires the same conjugate field for switching [42, 43].
 
6
For more realistic shapes such as a ferromagnetic prism, corresponding demagnetisation values have been calculated as well [171].
 
7
Not discussed here is the rich variety of magnetic configurations that form between these two variants, which have been observed in discs or polyhedral-shaped magnetic bodies, namely the C state (buckle state), the S state, the triangle state, the flower state, the leaf state or the diamond state [162, 179, 180].
 
Literature
7.
go back to reference Birss RR (1966) Symmetry and magnetism. North-Holland Birss RR (1966) Symmetry and magnetism. North-Holland
13.
go back to reference Perez-Mato J et al (2015) Symmetry-based computational tools for magnetic crystallography. Ann Rev Mater Res 45(1):217–248 ADSCrossRef Perez-Mato J et al (2015) Symmetry-based computational tools for magnetic crystallography. Ann Rev Mater Res 45(1):217–248 ADSCrossRef
19.
go back to reference Kleber W et al (2010) Einfuehrung in die Kristallographie, vol 19, verb. De Gruyter, Oldenbourg Kleber W et al (2010) Einfuehrung in die Kristallographie, vol 19, verb. De Gruyter, Oldenbourg
20.
go back to reference Borchardt-Ott W, Sowa H (2018) Kristallographie. Springer, Berlin Heidelberg CrossRef Borchardt-Ott W, Sowa H (2018) Kristallographie. Springer, Berlin Heidelberg CrossRef
21.
go back to reference Dzyaloshinskii IE (1960) On the magneto-electrical effects in antiferromagnets. J Exp Theoret Phys 10(3):628–629 Dzyaloshinskii IE (1960) On the magneto-electrical effects in antiferromagnets. J Exp Theoret Phys 10(3):628–629
22.
go back to reference Landau LD, Lifshitz EM, Pitaevskij LP (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Butterworth, Oxford Landau LD, Lifshitz EM, Pitaevskij LP (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Butterworth, Oxford
24.
go back to reference Nye JF (1984) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford University Press MATH Nye JF (1984) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford University Press MATH
25.
go back to reference Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press
28.
36.
go back to reference Blundell S (2001) Magnetism in condensed matter. Oxford University Press Blundell S (2001) Magnetism in condensed matter. Oxford University Press
38.
go back to reference Spaldin NA (2011) Magnetic materials: fundamentals and applications. 2nd ed. Cambridge University Press Spaldin NA (2011) Magnetic materials: fundamentals and applications. 2nd ed. Cambridge University Press
40.
go back to reference Artamonov YA, Gorbatsevich AA, Kopaev YV (1984) Magnetoferroelectric and toroidal ordering. J Exp Theoret Phys 40(7):290–293 Artamonov YA, Gorbatsevich AA, Kopaev YV (1984) Magnetoferroelectric and toroidal ordering. J Exp Theoret Phys 40(7):290–293
46.
go back to reference Izyumov YA, Syromyatnikov VN (1990) Phase transitions and crystal symmetry. Springer, Netherlands CrossRef Izyumov YA, Syromyatnikov VN (1990) Phase transitions and crystal symmetry. Springer, Netherlands CrossRef
47.
go back to reference Landau LD (1937) On the theory of phase transitions. J Exp Theoret Phys 7:19–32 Landau LD (1937) On the theory of phase transitions. J Exp Theoret Phys 7:19–32
53.
go back to reference Hubert A, Schaefer R (2009) Magnetic domains: the analysis of magnetic microstructures. Springer Hubert A, Schaefer R (2009) Magnetic domains: the analysis of magnetic microstructures. Springer
61.
go back to reference Seidel J (2016) Topological structures in ferroic materials. Springer, Berlin Heidelberg CrossRef Seidel J (2016) Topological structures in ferroic materials. Springer, Berlin Heidelberg CrossRef
63.
go back to reference Dzyaloshinskii IE (1957) Thermodynamical Theory of Weak Ferromagnetism in Antiferromagnetic Substances. J Exper Theoret Phys 5(6):1259–1272 Dzyaloshinskii IE (1957) Thermodynamical Theory of Weak Ferromagnetism in Antiferromagnetic Substances. J Exper Theoret Phys 5(6):1259–1272
71.
go back to reference Artamonov YA, Gorbatsevich AA (1985) Symmetry and dynamics of systems with toroidal moments. J Exper Theoret Phys 89:1078–1092 Artamonov YA, Gorbatsevich AA (1985) Symmetry and dynamics of systems with toroidal moments. J Exper Theoret Phys 89:1078–1092
73.
go back to reference Nanz S (2016) Toroidal multipole moments in classical electrodynamics: an analysis of their emergence and physical significance. Springer, Berlin Heidelberg CrossRef Nanz S (2016) Toroidal multipole moments in classical electrodynamics: an analysis of their emergence and physical significance. Springer, Berlin Heidelberg CrossRef
79.
go back to reference Zel’dovich IB (1957) Electromagnetic interaction with parity violation. J Exper Theoret Phys 1184–1186 Zel’dovich IB (1957) Electromagnetic interaction with parity violation. J Exper Theoret Phys 1184–1186
83.
go back to reference Naumov II, Bellaiche L, Fu H (2004) Unusual phase transitions in ferroelectric nanodisks and nanorods 432:4 Naumov II, Bellaiche L, Fu H (2004) Unusual phase transitions in ferroelectric nanodisks and nanorods 432:4
86.
go back to reference Dubovik VM, Tosunyan LA, Tugushev VV (1986) Axial toroidal moments in electrodynamics and solid-state physics, p 8 Dubovik VM, Tosunyan LA, Tugushev VV (1986) Axial toroidal moments in electrodynamics and solid-state physics, p 8
88.
go back to reference Sugano S, Kojima N (2000) Magneto-optics. Springer Sugano S, Kojima N (2000) Magneto-optics. Springer
92.
go back to reference Fiebig M, Pavlov VV, Pisarev RV (2005) Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Ame B 22(1):96 ADSCrossRef Fiebig M, Pavlov VV, Pisarev RV (2005) Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Ame B 22(1):96 ADSCrossRef
95.
go back to reference Brown PJ, Forsyth JB, Tasset F (2005) Studies of magneto-electric crystals using spherical neutron polarimetry. Solid State Sci 7(6):682–689 ADSCrossRef Brown PJ, Forsyth JB, Tasset F (2005) Studies of magneto-electric crystals using spherical neutron polarimetry. Solid State Sci 7(6):682–689 ADSCrossRef
96.
go back to reference Janoschek M et al (2007) Spherical neutron polarimetry with MuPAD. Phys B: Condensed Matter 397(1):125–130 ADSCrossRef Janoschek M et al (2007) Spherical neutron polarimetry with MuPAD. Phys B: Condensed Matter 397(1):125–130 ADSCrossRef
101.
go back to reference Ascher E (1974) Kineto-electric and Kinetomagnetic effects in crystals. Int J Magnet 5:287–295 Ascher E (1974) Kineto-electric and Kinetomagnetic effects in crystals. Int J Magnet 5:287–295
102.
go back to reference Freeman AJ, Schmid H, Institute BM (eds) (1975) Magnetoelectric interaction phenomena in crystals. Gordon and Breach Science Publishers Freeman AJ, Schmid H, Institute BM (eds) (1975) Magnetoelectric interaction phenomena in crystals. Gordon and Breach Science Publishers
106.
go back to reference Kharchenko YN et al (2003) Weak ferromagnetism and an intermediate incommensurate antiferromagnetic phase in LiNiPO \(_4\). Low Temp Phys 29(7):579–583 Kharchenko YN et al (2003) Weak ferromagnetism and an intermediate incommensurate antiferromagnetic phase in LiNiPO \(_4\). Low Temp Phys 29(7):579–583
107.
go back to reference Toft-Petersen R et al (2015) Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4. Phys Rev B 92(2):024404 Toft-Petersen R et al (2015) Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4. Phys Rev B 92(2):024404
108.
go back to reference Remeika JP (1960) GaFeO \(_3\): a ferromagnetic-piezoelectric compound. J Appl Phys 31(5):263–264 ADSCrossRef Remeika JP (1960) GaFeO \(_3\): a ferromagnetic-piezoelectric compound. J Appl Phys 31(5):263–264 ADSCrossRef
109.
go back to reference Rado GT (1964) Observation and possible mechanisms of magnetoelectric effects in a ferromagnet. Phys Rev Lett 13(10):335–337 ADSCrossRef Rado GT (1964) Observation and possible mechanisms of magnetoelectric effects in a ferromagnet. Phys Rev Lett 13(10):335–337 ADSCrossRef
118.
go back to reference Fiebig M, Eremenko VV, Chupis IE (eds) (2004) Magnetoelectric interaction phenomena in crystals. Kluwer Academic Publishers Fiebig M, Eremenko VV, Chupis IE (eds) (2004) Magnetoelectric interaction phenomena in crystals. Kluwer Academic Publishers
120.
go back to reference Sannikov DG (1997) Phenomenological theory of the magnetoelectric effect in some boracites. J Exper Theoret Phys 84(2):293–299 ADSCrossRef Sannikov DG (1997) Phenomenological theory of the magnetoelectric effect in some boracites. J Exper Theoret Phys 84(2):293–299 ADSCrossRef
128.
go back to reference Ungur L et al (2012) Net toroidal magnetic moment in the ground state of a Dy6- triethanolamine ring. J Am Chem Soc 134(45):18554–18557 CrossRef Ungur L et al (2012) Net toroidal magnetic moment in the ground state of a Dy6- triethanolamine ring. J Am Chem Soc 134(45):18554–18557 CrossRef
130.
go back to reference Guo P-H et al (2012) The first Dy4 single-molecule magnet with a toroidal magnetic moment in the ground state. Inorgan Chem 51(3):1233–1235 Guo P-H et al (2012) The first Dy4 single-molecule magnet with a toroidal magnetic moment in the ground state. Inorgan Chem 51(3):1233–1235
131.
go back to reference Plokhov DI, Zvezdin AK, Popov AI (2011) Macroscopic quantum dynamics of toroidal moment in Ising-type rare-earth clusters. Phys Rev B 83(18):184415 Plokhov DI, Zvezdin AK, Popov AI (2011) Macroscopic quantum dynamics of toroidal moment in Ising-type rare-earth clusters. Phys Rev B 83(18):184415
132.
go back to reference Plokhov DI, Popov AI, Zvezdin AK (2011) Quantum magnetoelectric effect in the molecular crystal Dy3. Phys Rev B 84(22):224436 Plokhov DI, Popov AI, Zvezdin AK (2011) Quantum magnetoelectric effect in the molecular crystal Dy3. Phys Rev B 84(22):224436
137.
go back to reference Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D: Appl Phys 38(8):123–152 ADSCrossRef Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D: Appl Phys 38(8):123–152 ADSCrossRef
138.
go back to reference Gorbatsevich AA, Omel’yanovskii OE, Tsebro VI (2009) Toroidal ordering in crystals and nanostructures. Physics-Uspekhi 52(8):835–845 ADS Gorbatsevich AA, Omel’yanovskii OE, Tsebro VI (2009) Toroidal ordering in crystals and nanostructures. Physics-Uspekhi 52(8):835–845 ADS
145.
go back to reference Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. J Exper Theoret Phys 11(3):708–709 Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. J Exper Theoret Phys 11(3):708–709
161.
go back to reference Stoehr J, Siegmann HC (2006) Magnetism: from fundamentals to nanoscale dynamics, vol 152. Springer Stoehr J, Siegmann HC (2006) Magnetism: from fundamentals to nanoscale dynamics, vol 152. Springer
163.
go back to reference Aktas B, Tagirov L, Mikailov F (eds) Magnetic nanostructures, vol 94. Springer (2007) Aktas B, Tagirov L, Mikailov F (eds) Magnetic nanostructures, vol 94. Springer (2007)
164.
go back to reference Zabel H, Farle M (eds) Magnetic nanostructures: spin dynamics and spin transport. vol 246. Springer (2013) Zabel H, Farle M (eds) Magnetic nanostructures: spin dynamics and spin transport. vol 246. Springer (2013)
165.
go back to reference Fermon C, Voorde MHVD (eds) (2017) Nanomagnetism: applications and perspectives. Wiley-VCH Verlag Fermon C, Voorde MHVD (eds) (2017) Nanomagnetism: applications and perspectives. Wiley-VCH Verlag
166.
go back to reference Stamps RL et al (2014) The 2014 Magnetism Roadmap. J Phys D: Appl Phys 47(33):333001 Stamps RL et al (2014) The 2014 Magnetism Roadmap. J Phys D: Appl Phys 47(33):333001
169.
go back to reference Aharoni A (1996) Introduction to the theory of ferromagnetism. Oxford University Press Aharoni A (1996) Introduction to the theory of ferromagnetism. Oxford University Press
182.
go back to reference Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. 240:44 Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. 240:44
184.
go back to reference Brown WF (1968) The fundamental theorem of fine-ferromagnetic-particle theory. J Appl Phys 39(2):993–994 ADSCrossRef Brown WF (1968) The fundamental theorem of fine-ferromagnetic-particle theory. J Appl Phys 39(2):993–994 ADSCrossRef
200.
go back to reference Klaeui M et al (2001) Vortex circulation control in mesoscopic ring magnets. Appl Phys Lett 78(21):3268–3270 ADSCrossRef Klaeui M et al (2001) Vortex circulation control in mesoscopic ring magnets. Appl Phys Lett 78(21):3268–3270 ADSCrossRef
203.
go back to reference Jaafar M et al (2008) Field induced vortex dynamics in magnetic Ni nanotriangles. Nanotechnology 19(28):285717 Jaafar M et al (2008) Field induced vortex dynamics in magnetic Ni nanotriangles. Nanotechnology 19(28):285717
204.
go back to reference Lua SYH et al (2009) Spin configuration of hexagonal shaped ferromagnetic elements arranged in different structures. J Appl Phys 105(7):07A319 CrossRef Lua SYH et al (2009) Spin configuration of hexagonal shaped ferromagnetic elements arranged in different structures. J Appl Phys 105(7):07A319 CrossRef
207.
go back to reference Vogel A et al (2012) Vortex dynamics in triangular-shaped confining potentials. J Appl Phys 112(6):063916 Vogel A et al (2012) Vortex dynamics in triangular-shaped confining potentials. J Appl Phys 112(6):063916
208.
go back to reference Udalov OG et al (2012) Nonreciprocal light diffraction by a lattice of magnetic vortices. Phys Rev B 86(9):094416 Udalov OG et al (2012) Nonreciprocal light diffraction by a lattice of magnetic vortices. Phys Rev B 86(9):094416
209.
go back to reference Krutyanskiy VL et al (2013) Second harmonic generation in magnetic nanoparticles with vortex magnetic state. Phys Rev B 88(9):094424 Krutyanskiy VL et al (2013) Second harmonic generation in magnetic nanoparticles with vortex magnetic state. Phys Rev B 88(9):094424
215.
go back to reference Tannous C, Comstock RL (2017) Magnetic information-storage materials. In: Kasap S, Capper P (eds)Springer handbook of electronic and photonic materials. Springer International Publishing, p 1 Tannous C, Comstock RL (2017) Magnetic information-storage materials. In: Kasap S, Capper P (eds)Springer handbook of electronic and photonic materials. Springer International Publishing, p 1
219.
go back to reference Jenkins AS et al (2014) Controlling the chirality and polarity of vortices in magnetic tunnel junctions. Appl Phys Lett 105(17):172403 Jenkins AS et al (2014) Controlling the chirality and polarity of vortices in magnetic tunnel junctions. Appl Phys Lett 105(17):172403
220.
go back to reference Luo Y et al (2019) Separated edge-soliton-mediated dynamic switching of vortex chirality and polarity. Phys Rev Appl 11(4):044090 Luo Y et al (2019) Separated edge-soliton-mediated dynamic switching of vortex chirality and polarity. Phys Rev Appl 11(4):044090
229.
go back to reference Kim S-K et al (2008) Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl Phys Lett 92(2):022509 Kim S-K et al (2008) Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents. Appl Phys Lett 92(2):022509
235.
go back to reference Haldar A, Adeyeye AO (2015) Vortex chirality control in circular disks using dipolecoupled nanomagnets. Appl Phys Lett 106(3):032404 Haldar A, Adeyeye AO (2015) Vortex chirality control in circular disks using dipolecoupled nanomagnets. Appl Phys Lett 106(3):032404
250.
go back to reference Nisoli C (2018) Topology by design in magnetic nano-materials: artificial spin ice. In: Gupta S, Saxena A (eds) The role of topology in materials. vol. 189. Springer International Publishing, pp 85-112 Nisoli C (2018) Topology by design in magnetic nano-materials: artificial spin ice. In: Gupta S, Saxena A (eds) The role of topology in materials. vol. 189. Springer International Publishing, pp 85-112
262.
go back to reference Budrikis Z et al (2012) Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. Phys Rev Lett 109(3):037203 Budrikis Z et al (2012) Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. Phys Rev Lett 109(3):037203
264.
go back to reference Mol LA et al (2009) Magnetic monopole and string excitations in two-dimensional spin ice. J Appl Phys 106(6):063913 Mol LA et al (2009) Magnetic monopole and string excitations in two-dimensional spin ice. J Appl Phys 106(6):063913
268.
go back to reference Rougemaille N et al (2013) Chiral nature of magnetic monopoles in artificial spin ice. New J Phys 15(3):035026 Rougemaille N et al (2013) Chiral nature of magnetic monopoles in artificial spin ice. New J Phys 15(3):035026
272.
go back to reference Morgan JP et al (2011) Magnetic reversal of an artificial square ice: dipolar correlation and charge ordering. J Phys 13(10):105002 Morgan JP et al (2011) Magnetic reversal of an artificial square ice: dipolar correlation and charge ordering. J Phys 13(10):105002
273.
go back to reference Wang RF et al (2007) Demagnetization protocols for frustrated interacting nanomagnet arrays. J Appl Phys 101(9):09J104 CrossRef Wang RF et al (2007) Demagnetization protocols for frustrated interacting nanomagnet arrays. J Appl Phys 101(9):09J104 CrossRef
275.
go back to reference Farhan A et al (2013) Direct observation of thermal relaxation in artificial spin ice. Phys Rev Lett 111(5):057204 Farhan A et al (2013) Direct observation of thermal relaxation in artificial spin ice. Phys Rev Lett 111(5):057204
286.
go back to reference Budrikis Z et al (2012) Domain dynamics and fluctuations in artificial square ice at finite temperatures. J Phys 14(3):035014 Budrikis Z et al (2012) Domain dynamics and fluctuations in artificial square ice at finite temperatures. J Phys 14(3):035014
287.
go back to reference Farhan A et al (2013) Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat Phys 9(6):375–382 CrossRef Farhan A et al (2013) Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat Phys 9(6):375–382 CrossRef
291.
go back to reference Morgan JP et al (2011) Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat Phys 7(1):75–79 CrossRef Morgan JP et al (2011) Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat Phys 7(1):75–79 CrossRef
296.
go back to reference Ortiz-Ambriz A et al (2019) Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev Mod Phys 91(4):041003 Ortiz-Ambriz A et al (2019) Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev Mod Phys 91(4):041003
299.
go back to reference Goncalves RS et al (2019) Tuning magnetic monopole population and mobility in unidirectional array of nanomagnets as a function of lattice parameters. Appl Phys Lett 114(14):142401 Goncalves RS et al (2019) Tuning magnetic monopole population and mobility in unidirectional array of nanomagnets as a function of lattice parameters. Appl Phys Lett 114(14):142401
304.
go back to reference Saccone M et al (2019) Towards artificial Ising spin glasses: Thermal ordering in randomized arrays of Ising-type nanomagnets. Physical Review B 99(22):224403 Saccone M et al (2019) Towards artificial Ising spin glasses: Thermal ordering in randomized arrays of Ising-type nanomagnets. Physical Review B 99(22):224403
310.
go back to reference Saccone M et al (2019) Dipolar Cairo lattice: geometrical frustration and short-range correlations. Phys Rev Mater 3(10):104402 Saccone M et al (2019) Dipolar Cairo lattice: geometrical frustration and short-range correlations. Phys Rev Mater 3(10):104402
327.
go back to reference Zhu X et al (2002) Magnetization reversal and configurational anisotropy of dense permalloy dot arrays. Appl Phys Lett 80(25):4789–4791 ADSCrossRef Zhu X et al (2002) Magnetization reversal and configurational anisotropy of dense permalloy dot arrays. Appl Phys Lett 80(25):4789–4791 ADSCrossRef
329.
go back to reference Natali M et al (2004) Correlated vortex chiralities in interacting permalloy dot patterns. J Appl Phys 96(8):4334–4341 ADSCrossRef Natali M et al (2004) Correlated vortex chiralities in interacting permalloy dot patterns. J Appl Phys 96(8):4334–4341 ADSCrossRef
330.
go back to reference Wang J, Adeyeye AO, Singh N (2005) Magnetostatic interactions in mesoscopic Ni \(_{80}\)Fe \(_{20}\) ring arrays. Appl Phys Lett 87(26):262508 Wang J, Adeyeye AO, Singh N (2005) Magnetostatic interactions in mesoscopic Ni \(_{80}\)Fe \(_{20}\) ring arrays. Appl Phys Lett 87(26):262508
340.
go back to reference Maier SA (2007) Plasmonics: fundamentals and applications. Springer Maier SA (2007) Plasmonics: fundamentals and applications. Springer
345.
go back to reference Brener I (2020) Dielectric metamaterials fundamentals, designs and applications. Woodhead Publishing Brener I (2020) Dielectric metamaterials fundamentals, designs and applications. Woodhead Publishing
351.
go back to reference Maradudin AA, Sambles R, Barnes WL (2014) Modern plasmonics. Elsevier Maradudin AA, Sambles R, Barnes WL (2014) Modern plasmonics. Elsevier
356.
go back to reference Castellanos GW, Bai P, Gomez Rivas J (2019) Lattice resonances in dielectric metasurfaces. J Appl Phys 125(21):213105 Castellanos GW, Bai P, Gomez Rivas J (2019) Lattice resonances in dielectric metasurfaces. J Appl Phys 125(21):213105
360.
go back to reference Pineider F, Sangregorio C (2018) Nanomaterials for magnetoplasmonics. In: Novel magnetic nanostructures. Elsevier, pp 191–220 Pineider F, Sangregorio C (2018) Nanomaterials for magnetoplasmonics. In: Novel magnetic nanostructures. Elsevier, pp 191–220
361.
go back to reference Maccaferri N et al (2020) Nanoscale magnetophotonics. J Appl Phys 127(8):080903 Maccaferri N et al (2020) Nanoscale magnetophotonics. J Appl Phys 127(8):080903
Metadata
Title
Scientific Background
Author
Dr. Jannis Lehmann
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-85495-9_2

Premium Partners