Abstract
The following Chapter introduces three main topics of my work: ferroic order, nanomagnetism and metamaterials. First, the concept of ferroic order is presented. A symmetry-based classification is given together with a brief discussion of phase transitions, the emergence of a ferroic order parameter, spontaneous domain formation and the manipulation of an order parameter with a conjugate field. This part closes by unravelling ferrotoroidicity. Second, magnetic properties of sub-micrometre-sized objects made from a ferromagnetic material are discussed. Here, the formation of different kinds of spin structures is explained that serve as building blocks of nanomagnetic arrays. The suppression or—more important here—the support of long-range order in extended magnetostatic-coupled arrays is explained. The third part of this Chapter introduces metamaterials, a class of matter that is assembled on length scales comparable with the wavelength of radiation that interacts with it and that provides design-determined novel material properties and functionalities.