Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Search-Based Motion Planning for Performance Autonomous Driving

Authors: Zlatan Ajanovic, Enrico Regolin, Georg Stettinger, Martin Horn, Antonella Ferrara

Published in: Advances in Dynamics of Vehicles on Roads and Tracks

Publisher: Springer International Publishing

share
SHARE

Abstract

Driving on the limits of vehicle dynamics requires predictive planning of future vehicle states. In this work, a search-based motion planning is used to generate suitable reference trajectories of dynamic vehicle states with the goal to achieve the minimum lap time on slippery roads. The search-based approach enables to explicitly consider a nonlinear vehicle dynamics model as well as constraints on states and inputs so that even challenging scenarios can be achieved in a safe and optimal way. The algorithm performance is evaluated in simulated driving on a track with segments of different curvatures. Our code is available at https://​git.​io/​JenvB.
Literature
1.
go back to reference Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Appl. Methods 36(5), 628–647 (2015) MathSciNetCrossRef Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Appl. Methods 36(5), 628–647 (2015) MathSciNetCrossRef
2.
go back to reference Liniger, A., Lygeros, J.: A noncooperative game approach to autonomous racing. IEEE Trans. Control Syst. Technol. 1–14 (2019) Liniger, A., Lygeros, J.: A noncooperative game approach to autonomous racing. IEEE Trans. Control Syst. Technol. 1–14 (2019)
3.
go back to reference Kolter, J.Z., Plagemann, C., Jackson, D.T., Ng, A.Y., Thrun, S.: A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving. In: 2010 IEEE International Conference on Robotics and Automation, pp. 839–845. IEEE (2010) Kolter, J.Z., Plagemann, C., Jackson, D.T., Ng, A.Y., Thrun, S.: A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving. In: 2010 IEEE International Conference on Robotics and Automation, pp. 839–845. IEEE (2010)
4.
go back to reference Velenis, E., Tsiotras, P., Lu, J.: Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: ECC, pp. 1233–1240. IEEE (2007) Velenis, E., Tsiotras, P., Lu, J.: Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: ECC, pp. 1233–1240. IEEE (2007)
5.
go back to reference Velenis, E., Tsiotras, P., Lu, J.: Optimality properties and driver input parameterization for trail-braking cornering. Eur. J. Control 14(4), 308–320 (2008) CrossRef Velenis, E., Tsiotras, P., Lu, J.: Optimality properties and driver input parameterization for trail-braking cornering. Eur. J. Control 14(4), 308–320 (2008) CrossRef
6.
go back to reference Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013) CrossRef Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013) CrossRef
7.
go back to reference You, C., Tsiotras, P.: Real-time trail-braking maneuver generation for off-road vehicle racing. In: 2018 Annual American Control Conference (ACC), pp. 4751–4756. IEEE (2018) You, C., Tsiotras, P.: Real-time trail-braking maneuver generation for off-road vehicle racing. In: 2018 Annual American Control Conference (ACC), pp. 4751–4756. IEEE (2018)
8.
go back to reference Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018) CrossRef Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018) CrossRef
9.
go back to reference Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic MPC for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May 2017 Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic MPC for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May 2017
10.
go back to reference Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M.: Search-based optimal motion planning for automated driving. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4523–4530. IEEE (2018) Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M.: Search-based optimal motion planning for automated driving. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4523–4530. IEEE (2018)
11.
go back to reference Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7166 (2008) Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7166 (2008)
12.
go back to reference Regolin, E., Zambelli, M., Ferrara, A.: A multi-rate ISM approach for robust vehicle stability control during cornering. IFAC-PapersOnLine 51(9), 249–254 (2018) CrossRef Regolin, E., Zambelli, M., Ferrara, A.: A multi-rate ISM approach for robust vehicle stability control during cornering. IFAC-PapersOnLine 51(9), 249–254 (2018) CrossRef
13.
go back to reference Regolin, E., Vazquez, A.G.A., Zambelli, M., Victorino, A., Charara, A., Ferrara, A.: A sliding mode virtual sensor for wheel forces estimation with accuracy enhancement via EKF. IEEE Trans. Veh. Technol. 68(4), 3457–3471 (2019) CrossRef Regolin, E., Vazquez, A.G.A., Zambelli, M., Victorino, A., Charara, A., Ferrara, A.: A sliding mode virtual sensor for wheel forces estimation with accuracy enhancement via EKF. IEEE Trans. Veh. Technol. 68(4), 3457–3471 (2019) CrossRef
14.
go back to reference Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation, vol. 43. World Scientific, Singapore (1997) CrossRef Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation, vol. 43. World Scientific, Singapore (1997) CrossRef
15.
go back to reference Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., Happee, R.: Steady-state drifting stabilization of RWD vehicles. Control Eng. Pract. 19(11), 1363–1376 (2011) CrossRef Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., Happee, R.: Steady-state drifting stabilization of RWD vehicles. Control Eng. Pract. 19(11), 1363–1376 (2011) CrossRef
16.
go back to reference Pacejka, H.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2012) Pacejka, H.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2012)
17.
go back to reference Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 31(3), 346–359 (2012) CrossRef Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 31(3), 346–359 (2012) CrossRef
18.
go back to reference Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968) CrossRef Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968) CrossRef
19.
go back to reference Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008) CrossRef Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008) CrossRef
20.
go back to reference Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for Bertha — a local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014, pp. 450–457. IEEE (2014) Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for Bertha — a local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014, pp. 450–457. IEEE (2014)
Metadata
Title
Search-Based Motion Planning for Performance Autonomous Driving
Authors
Zlatan Ajanovic
Enrico Regolin
Georg Stettinger
Martin Horn
Antonella Ferrara
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-38077-9_134

Premium Partner