Skip to main content
Top

2015 | OriginalPaper | Chapter

14.  Second Generation Applications of Other Types of Current Conveyors in Realizing Synthetic Impedances

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chosen from a vast amount of literature in the area of impedance simulation using CCs, a number of novel synthetic impedance circuits have been described using the new variants of CCs (such as DOCCII, DVCC, CCIII, DXCCII, MICCII, DDCC and FDCCII etc.) for realizing both grounded and floating forms of inductors and other related elements, which possess a number of interesting features.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The differential voltage Current Conveyor was first introduced by K. Pal in [43].
 
2
For a class of floating inductors realizable with DVCCs along with other types of CCs, using only three passive elements, see [35].
 
3
For an interesting work demonstrating the use of DXCCII in realizing a number of positive/negative, lossy/loss-less inductance simulation circuits, see [34].
 
4
It is interesting to note that in view of the equivalence of CCII- and nullor, these conjectures have their basis in some important theorems existing in literature in the context of gyrator realization using nullors [62].
 
Literature
1.
go back to reference Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747CrossRef Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747CrossRef
2.
go back to reference Abuelma’atti MT (1998) Comment: floating inductance simulation based on current conveyors. Electron Lett 34:1037CrossRef Abuelma’atti MT (1998) Comment: floating inductance simulation based on current conveyors. Electron Lett 34:1037CrossRef
3.
go back to reference Ananda Mohan PV (2005) Floating capacitance simulation using current conveyors. J Circ Syst Comput 14:123–128CrossRef Ananda Mohan PV (2005) Floating capacitance simulation using current conveyors. J Circ Syst Comput 14:123–128CrossRef
4.
go back to reference Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191CrossRefMATH Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191CrossRefMATH
5.
go back to reference Metin B (2011) Supplementary inductance simulator topologies employing single DXCCII. Radioengineering 20:614–618 Metin B (2011) Supplementary inductance simulator topologies employing single DXCCII. Radioengineering 20:614–618
6.
go back to reference Liu SI, Yang CY (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296CrossRef Liu SI, Yang CY (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296CrossRef
7.
go back to reference Ananda Mohan PV (1998) Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electron Lett 34:1037–1038CrossRef Ananda Mohan PV (1998) Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electron Lett 34:1037–1038CrossRef
8.
go back to reference Sedef H, Acar C (2000) A new floating FDNR circuit using differential voltage current conveyors. Int J Electron Commun (AEU) 54:297–301 Sedef H, Acar C (2000) A new floating FDNR circuit using differential voltage current conveyors. Int J Electron Commun (AEU) 54:297–301
9.
go back to reference Kuntman H, Gulsoy M, Cicekoglu O (2000) Actively-simulated grounded lossy inductors using third generation current conveyors. Microelectron J 31:245–250CrossRef Kuntman H, Gulsoy M, Cicekoglu O (2000) Actively-simulated grounded lossy inductors using third generation current conveyors. Microelectron J 31:245–250CrossRef
10.
go back to reference Wang HY, Lee CT (2000) Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 87:293–301CrossRef Wang HY, Lee CT (2000) Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 87:293–301CrossRef
11.
go back to reference Minaei S (2003) A new high performance CMOS third generation current conveyor (CCIII) and its application. Electr. Engineering J 85:147–153 Minaei S (2003) A new high performance CMOS third generation current conveyor (CCIII) and its application. Electr. Engineering J 85:147–153
12.
go back to reference Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912CrossRef Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912CrossRef
13.
go back to reference Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passiv Electron Comp 26:87–89CrossRef Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passiv Electron Comp 26:87–89CrossRef
14.
go back to reference Incekaraoglu M, Cam U (2005) Realization of series and parallel R-L and C-d Impedances using single differential voltage current conveyor. Analog Integr Circ Sig Process 43:101–104CrossRef Incekaraoglu M, Cam U (2005) Realization of series and parallel R-L and C-d Impedances using single differential voltage current conveyor. Analog Integr Circ Sig Process 43:101–104CrossRef
15.
go back to reference Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483CrossRef Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483CrossRef
16.
go back to reference Zeki A, Toker A (2005) DXCCII-based tunable gyrator. Int J Electron Commun (AEU) 59:59–62CrossRef Zeki A, Toker A (2005) DXCCII-based tunable gyrator. Int J Electron Commun (AEU) 59:59–62CrossRef
17.
go back to reference Yuce E (2006) Comment on Realization of series and parallel R-L and C-D impedances using single differential voltage current conveyor. Analog Integr Circ Sig Process 49:91–92CrossRef Yuce E (2006) Comment on Realization of series and parallel R-L and C-D impedances using single differential voltage current conveyor. Analog Integr Circ Sig Process 49:91–92CrossRef
18.
go back to reference Yuce E (2006) On the realization of the floating simulators using only grounded passive components. Analog Integr Circ Sig Process 49:161–166CrossRef Yuce E (2006) On the realization of the floating simulators using only grounded passive components. Analog Integr Circ Sig Process 49:161–166CrossRef
19.
go back to reference Yuce E, Minaei S, Cicekoglu O (2005) A novel grounded inductor realization using a minimum number of active and passive components. ETRI J 27:427–432CrossRef Yuce E, Minaei S, Cicekoglu O (2005) A novel grounded inductor realization using a minimum number of active and passive components. ETRI J 27:427–432CrossRef
20.
go back to reference Yuce E, Cicekoglu O, Minaei S (2006) CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr Circ Sig Process 46:287–291CrossRef Yuce E, Cicekoglu O, Minaei S (2006) CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr Circ Sig Process 46:287–291CrossRef
21.
go back to reference Minaei S, Yuce E, Cicekoglu O (2006) A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr Circ Sig Process 47:199–202CrossRef Minaei S, Yuce E, Cicekoglu O (2006) A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr Circ Sig Process 47:199–202CrossRef
22.
go back to reference Yuce E, Minaei S, Cicekoglu O (2006) Limitations of the simulated inductors based on a single current conveyors. IEEE Trans Circ Syst-I 53:2860–2867CrossRef Yuce E, Minaei S, Cicekoglu O (2006) Limitations of the simulated inductors based on a single current conveyors. IEEE Trans Circ Syst-I 53:2860–2867CrossRef
23.
go back to reference Yuce E, Minaei S (2007) A new active network suitable for realizing ladder filters and transformer simulator. J Circ Syst Comput 16:29–41CrossRef Yuce E, Minaei S (2007) A new active network suitable for realizing ladder filters and transformer simulator. J Circ Syst Comput 16:29–41CrossRef
24.
go back to reference Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37CrossRef Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37CrossRef
25.
go back to reference Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans Circ Syst-I 55:276–283MathSciNetCrossRef Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effects. IEEE Trans Circ Syst-I 55:276–283MathSciNetCrossRef
26.
go back to reference Riewruja V, Petchmaneelumka W (2008) Floating current-controlled resistance converters using OTAs. Int J Electron Commun 62:725–731CrossRef Riewruja V, Petchmaneelumka W (2008) Floating current-controlled resistance converters using OTAs. Int J Electron Commun 62:725–731CrossRef
27.
go back to reference Metin B, Herencsar N, Horng JW (2014) DCCII-based novel lossless grounded inductance simulators with no element matching constrains. Radioeng J 23:532–4538 Metin B, Herencsar N, Horng JW (2014) DCCII-based novel lossless grounded inductance simulators with no element matching constrains. Radioeng J 23:532–4538
28.
go back to reference Horng JW, Hou CL, Chang CM, Yang H, Shyu WT (2009) Higher-order immittance functions using current conveyors. Analog Integr Circ Sig Process 61:205–209CrossRef Horng JW, Hou CL, Chang CM, Yang H, Shyu WT (2009) Higher-order immittance functions using current conveyors. Analog Integr Circ Sig Process 61:205–209CrossRef
29.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Floating immittance function simulator and its applications. Circ Syst Sig Process 28:55–63CrossRefMATH Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Floating immittance function simulator and its applications. Circ Syst Sig Process 28:55–63CrossRefMATH
30.
go back to reference Yuce E, Minaei S (2009) On the realization of simulated inductors with reduced parasitic impedance effects. Circ Syst Sig Process 28:451–465CrossRef Yuce E, Minaei S (2009) On the realization of simulated inductors with reduced parasitic impedance effects. Circ Syst Sig Process 28:451–465CrossRef
31.
go back to reference Yuce E, Minaei S (2009) Novel floating simulated inductors with wider operating-frequency ranges. Microelectron J 40:928–938CrossRef Yuce E, Minaei S (2009) Novel floating simulated inductors with wider operating-frequency ranges. Microelectron J 40:928–938CrossRef
32.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:423–427CrossRef Sagbas M, Ayten UE, Sedef H, Koksal M (2009) Electronically tunable floating inductance simulator. Int J Electron Commun (AEU) 63:423–427CrossRef
33.
go back to reference Lahiri A (2009) Comment on ‘Electronically tunable floating inductance simulator’. Int J Electron Commun (AEU) 63:878CrossRef Lahiri A (2009) Comment on ‘Electronically tunable floating inductance simulator’. Int J Electron Commun (AEU) 63:878CrossRef
34.
go back to reference Kacar F, Yesil A (2010) Novel grounded parallel inductances simulators realization using a minimum number of active and passive components. Microelectron J 41:632–638CrossRef Kacar F, Yesil A (2010) Novel grounded parallel inductances simulators realization using a minimum number of active and passive components. Microelectron J 41:632–638CrossRef
35.
go back to reference Soliman AM (2010) On the realization of floating inductors. Nat Sci 8(5):167–180 Soliman AM (2010) On the realization of floating inductors. Nat Sci 8(5):167–180
36.
go back to reference Metin B, Minaei S (2010) Parasitic compensation in CC-I based circuits for reduced power consumption. Analog Integ Circ Sig Process 65:157–162CrossRef Metin B, Minaei S (2010) Parasitic compensation in CC-I based circuits for reduced power consumption. Analog Integ Circ Sig Process 65:157–162CrossRef
37.
go back to reference Saad RA, Soliman AM (2010) On the systematic synthesis of CCII-based floating simulators. Int J Circ Theor Appl 38:935–967CrossRefMATH Saad RA, Soliman AM (2010) On the systematic synthesis of CCII-based floating simulators. Int J Circ Theor Appl 38:935–967CrossRefMATH
38.
go back to reference Kacar F, Metin B, Kuntman H (2010) A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. Int J Electron Commun (AEU) 64:774–778CrossRef Kacar F, Metin B, Kuntman H (2010) A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. Int J Electron Commun (AEU) 64:774–778CrossRef
39.
go back to reference Horng JW (2010) Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integ Circ Sig Process 62:407–413CrossRef Horng JW (2010) Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integ Circ Sig Process 62:407–413CrossRef
40.
go back to reference Yuce E (2010) A novel floating simulation topology composed of only grounded passive components. Int J Electron 97:249–262CrossRef Yuce E (2010) A novel floating simulation topology composed of only grounded passive components. Int J Electron 97:249–262CrossRef
41.
go back to reference Kacar F (2010) New lossless inductance simulators realization using a minimum active and passive components. Microelectron J 41:109–113CrossRef Kacar F (2010) New lossless inductance simulators realization using a minimum active and passive components. Microelectron J 41:109–113CrossRef
42.
go back to reference Kacar F, Yesil A (2011) FDCCII-based FDNR simulator topologies. Int J Electron 99:285–293CrossRef Kacar F, Yesil A (2011) FDCCII-based FDNR simulator topologies. Int J Electron 99:285–293CrossRef
43.
go back to reference Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef
44.
go back to reference Swamy MNS (2011) Mutators, generalized Impedance converters and inverters, and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MathSciNetCrossRefMATH Swamy MNS (2011) Mutators, generalized Impedance converters and inverters, and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MathSciNetCrossRefMATH
45.
go back to reference Myderrizi I, Minaei S, Yuce E (2011) DXCCII-based grounded inductances simulators and filter applications. Microelectron J 42:1074–1081CrossRef Myderrizi I, Minaei S, Yuce E (2011) DXCCII-based grounded inductances simulators and filter applications. Microelectron J 42:1074–1081CrossRef
46.
go back to reference Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. Int J Electron Commun (AEU) 65:1–8CrossRef Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. Int J Electron Commun (AEU) 65:1–8CrossRef
47.
go back to reference Ibrahim MA, Minaei S, Yuce E, Herencsar N, Koton J (2012) Lossy/lossless floating/grounded inductance simulation using one DDCC. Radioengineering 21:3–10 Ibrahim MA, Minaei S, Yuce E, Herencsar N, Koton J (2012) Lossy/lossless floating/grounded inductance simulation using one DDCC. Radioengineering 21:3–10
48.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2012) Reply to comment on ‘Electronically tunable floating inductance simulator’. Int J Electron Commun (AEU) 66:86–88CrossRef Sagbas M, Ayten UE, Sedef H, Koksal M (2012) Reply to comment on ‘Electronically tunable floating inductance simulator’. Int J Electron Commun (AEU) 66:86–88CrossRef
49.
go back to reference Herencsar N, Lahiri A, Koton J, Vrba K, Metin B (2012) Realization of resistorless lossless positive and negative grounded inductor simulators using single ZC-CCCITA. Radioengineering 21:264–272 Herencsar N, Lahiri A, Koton J, Vrba K, Metin B (2012) Realization of resistorless lossless positive and negative grounded inductor simulators using single ZC-CCCITA. Radioengineering 21:264–272
50.
go back to reference Metin B (2012) Canonical inductor simulators with grounded capacitors using DCCII. Int J Electron 99:1027–1035CrossRef Metin B (2012) Canonical inductor simulators with grounded capacitors using DCCII. Int J Electron 99:1027–1035CrossRef
51.
go back to reference Sagbas M (2014) Electronically tunable mutually coupled circuit using only two active components. Int J Electron 101:364–374CrossRef Sagbas M (2014) Electronically tunable mutually coupled circuit using only two active components. Int J Electron 101:364–374CrossRef
52.
go back to reference Prasad D, Ahmad J (2014) New electronically-controllable lossless synthetic floating inductance circuit using single VDCC. Circ Syst 5:13–15CrossRef Prasad D, Ahmad J (2014) New electronically-controllable lossless synthetic floating inductance circuit using single VDCC. Circ Syst 5:13–15CrossRef
53.
go back to reference Kacar F, Yesil A, Minaei S, Kuntman H (2014) Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int J Electron Commun (AEU) 68:73–78CrossRef Kacar F, Yesil A, Minaei S, Kuntman H (2014) Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int J Electron Commun (AEU) 68:73–78CrossRef
54.
go back to reference Wang Z (1990) Novel voltage-controlled grounded resistor. Electron Lett 26:1711–1712CrossRef Wang Z (1990) Novel voltage-controlled grounded resistor. Electron Lett 26:1711–1712CrossRef
55.
go back to reference Piovaccari A (1995) CMOS integrated third generation current conveyor. Electron Lett 31:1228–1229CrossRef Piovaccari A (1995) CMOS integrated third generation current conveyor. Electron Lett 31:1228–1229CrossRef
56.
go back to reference Zeki A, Toker A, Cicekoglu O (2002) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923CrossRef Zeki A, Toker A, Cicekoglu O (2002) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923CrossRef
57.
go back to reference Kacar F, Metin B, Kuntman H (2010) A new dual-X CMOS second generation current conveyor (DXCCII) with a FDNR circuit application. AEU Int J Electron Commun 64:774–778CrossRef Kacar F, Metin B, Kuntman H (2010) A new dual-X CMOS second generation current conveyor (DXCCII) with a FDNR circuit application. AEU Int J Electron Commun 64:774–778CrossRef
58.
go back to reference Elvan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef Elvan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef
59.
go back to reference Kacar F, Metin B, Kuntman H, Cicekoglu O (2009) A new high-performance CMOS fully differential second-generation current conveyor with application example of biquad filter realization. Int J Electron 97:499–510CrossRef Kacar F, Metin B, Kuntman H, Cicekoglu O (2009) A new high-performance CMOS fully differential second-generation current conveyor with application example of biquad filter realization. Int J Electron 97:499–510CrossRef
60.
go back to reference Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple input max-min circuits and its applications. Analog Integ Circ Sig Process 61:93–105CrossRef Prommee P, Angkeaw K, Somdunyakanok M, Dejhan K (2009) CMOS-based near zero-offset multiple input max-min circuits and its applications. Analog Integ Circ Sig Process 61:93–105CrossRef
61.
go back to reference Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyor and their applications. IEE Proc Circ Devices Syst 143:91–96CrossRefMATH Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyor and their applications. IEE Proc Circ Devices Syst 143:91–96CrossRefMATH
62.
go back to reference Adams KM, Deprettere E (1974) On the realization of gyrators by nullors and resistors. Int J Circ Theor Appl 2:287–290CrossRef Adams KM, Deprettere E (1974) On the realization of gyrators by nullors and resistors. Int J Circ Theor Appl 2:287–290CrossRef
Metadata
Title
Second Generation Applications of Other Types of Current Conveyors in Realizing Synthetic Impedances
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_14