Skip to main content
Top

2015 | OriginalPaper | Chapter

9. Second Generation Controlled Current Conveyors (CCCII) and Their Applications

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An interesting method of realizing electronically-controllable functions is through the use of the translinear current conveyor which is implemented from a mixed translinear cell (MTC). This implementation exhibits an input resistance looking into terminal X which is electronically-controllable and hence, it is referred to as the Second generation Controlled Current Conveyor (CCCII). The objective of this chapter is to present significant developments on the hardware implementation and applications of electronically-controllable analog circuits using CCCIIs as active elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controlled bandpass filter based on translinear conveyor. Electron Lett 31:1727–1728 Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controlled bandpass filter based on translinear conveyor. Electron Lett 31:1727–1728
2.
go back to reference Fabre A, Saaid O, Wiest F, Boucheron C (1996) High frequency applications based on a new current controlled conveyor. IEEE Trans Circ Syst-I 43:82–91 Fabre A, Saaid O, Wiest F, Boucheron C (1996) High frequency applications based on a new current controlled conveyor. IEEE Trans Circ Syst-I 43:82–91
3.
go back to reference Chaisricharoen R, Chipipop B, Sirinaovakul B (2010) CMOS CCCII: structures, characteristics, and considerations. Int J Electron Commun (AEU) 64:540–557 Chaisricharoen R, Chipipop B, Sirinaovakul B (2010) CMOS CCCII: structures, characteristics, and considerations. Int J Electron Commun (AEU) 64:540–557
4.
go back to reference Chunhua W, Qiujing Z, Haiguang L (2009) CMOS current controlled fully balanced current conveyor. J Semiconductors 30:075009-1–075009-6 Chunhua W, Qiujing Z, Haiguang L (2009) CMOS current controlled fully balanced current conveyor. J Semiconductors 30:075009-1–075009-6
5.
go back to reference Abbas Z, Scotti G, Olivieri M (2011) Current controlled current conveyor (CCCII) and application using 65 nm CMOS technology. World Acad Sci Eng Tech 55:935–939 Abbas Z, Scotti G, Olivieri M (2011) Current controlled current conveyor (CCCII) and application using 65 nm CMOS technology. World Acad Sci Eng Tech 55:935–939
6.
go back to reference Zhang Q, Wang C, Sun J, Du S (2011) A new type of current conveyor and its application in fully balanced differential current mode elliptic filter design. J Electr Eng 62:126–133 Zhang Q, Wang C, Sun J, Du S (2011) A new type of current conveyor and its application in fully balanced differential current mode elliptic filter design. J Electr Eng 62:126–133
7.
go back to reference Kapur G, Mittal S, Markan CM, Pyara VP (2012) Design of analog field programmable CMOS current conveyor. Sci J Circ Syst Sig Process 1:9–21 Kapur G, Mittal S, Markan CM, Pyara VP (2012) Design of analog field programmable CMOS current conveyor. Sci J Circ Syst Sig Process 1:9–21
8.
go back to reference Seguin F, Godara B, Alicalapa F, Fabre A (2004) 2.2 GHz all n-p-n second-generation controlled conveyor in pseudo class AB using 0.8-μm BiCMOS technology. IEEE Trans Circ Syst–II 51:369–373 Seguin F, Godara B, Alicalapa F, Fabre A (2004) 2.2 GHz all n-p-n second-generation controlled conveyor in pseudo class AB using 0.8-μm BiCMOS technology. IEEE Trans Circ Syst–II 51:369–373
9.
go back to reference Senani R, Singh AK, Singh VK (2004) A new floating current-controlled positive resistance using mixed translinear cells. IEEE Trans Circ Syst-II 51:374–377 Senani R, Singh AK, Singh VK (2004) A new floating current-controlled positive resistance using mixed translinear cells. IEEE Trans Circ Syst-II 51:374–377
10.
go back to reference Pawarangkoon P, Kiranon W (2004) Electronically-tunable floating resistor. Int J Electron 91:665–673 Pawarangkoon P, Kiranon W (2004) Electronically-tunable floating resistor. Int J Electron 91:665–673
11.
go back to reference Saaid O, Fabre A (1996) Class AB current-controlled resistor for high performance current-mode applications. Electron Lett 32:4–5 Saaid O, Fabre A (1996) Class AB current-controlled resistor for high performance current-mode applications. Electron Lett 32:4–5
12.
go back to reference Maheshwari S (2005) Additional summing/difference amplifiers using CCCIIs. J Active Passive Electron Devices 1:159–162 Maheshwari S (2005) Additional summing/difference amplifiers using CCCIIs. J Active Passive Electron Devices 1:159–162
13.
go back to reference Maheshwari S (2002) High CMRR wide bandwidth instrumentation amplifier using current controlled conveyors. Int J Electron 89:889–896 Maheshwari S (2002) High CMRR wide bandwidth instrumentation amplifier using current controlled conveyors. Int J Electron 89:889–896
14.
go back to reference Ercan H, Tekin SA, Alci M (2012) Voltage and current controlled high CMRR instrumentation amplifier using CMOS current conveyors. Turk J Electron Eng Comput Sci 20:547–556 Ercan H, Tekin SA, Alci M (2012) Voltage and current controlled high CMRR instrumentation amplifier using CMOS current conveyors. Turk J Electron Eng Comput Sci 20:547–556
15.
go back to reference Kiranon W, Pawarangkoon P (1997) Floating inductance simulation based on current conveyors. Electron Lett 33:1748–1749; Comment Abuelma’atti MT Floating inductance simulation based on current conveyors. Electron Lett 34: 1037–1038 Kiranon W, Pawarangkoon P (1997) Floating inductance simulation based on current conveyors. Electron Lett 33:1748–1749; Comment Abuelma’atti MT Floating inductance simulation based on current conveyors. Electron Lett 34: 1037–1038
16.
go back to reference Yuce E, Minaei S, Cicekoglu O (2006) Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr Eng 88:519–525 Yuce E, Minaei S, Cicekoglu O (2006) Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr Eng 88:519–525
17.
go back to reference Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passive Electron Comp 26:87–89 Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passive Electron Comp 26:87–89
18.
go back to reference Sedef H, Sagbas M, Acar C (2008) Current-controllable fully-integrated inductor simulator using CCCIIs. Int J Electron 95:425–429 Sedef H, Sagbas M, Acar C (2008) Current-controllable fully-integrated inductor simulator using CCCIIs. Int J Electron 95:425–429
19.
go back to reference Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37 Minaei S, Yuce E (2008) Realization of tunable active floating inductance simulators. Int J Electron 95:27–37
20.
go back to reference Abuelma’atti MT, Tasadduq NA (1999) Electronically tunable capacitance multiplier and frequency-dependent negative-resistor simulator using the current-controlled current conveyor. Microelectron J 30:869–873 Abuelma’atti MT, Tasadduq NA (1999) Electronically tunable capacitance multiplier and frequency-dependent negative-resistor simulator using the current-controlled current conveyor. Microelectron J 30:869–873
21.
go back to reference Yuce E, Minaei S (2008) Electronically tunable simulated transformer and its application to stagger-tuned filter. IEEE Trans Instrum Meas 57:2083–2088 Yuce E, Minaei S (2008) Electronically tunable simulated transformer and its application to stagger-tuned filter. IEEE Trans Instrum Meas 57:2083–2088
22.
go back to reference Parveen T, Ahmed MT, Khan IA (2009) A canonical voltage-mode universal CCCII-C filter. J Active Passive Electron Devices 4:7–12 Parveen T, Ahmed MT, Khan IA (2009) A canonical voltage-mode universal CCCII-C filter. J Active Passive Electron Devices 4:7–12
23.
go back to reference Ranjan A, Paul SK (2011) Voltage mode universal biquad using CCCII. Active Passive Electron Comp 2011:1–5, ID 439052 Ranjan A, Paul SK (2011) Voltage mode universal biquad using CCCII. Active Passive Electron Comp 2011:1–5, ID 439052
24.
go back to reference Altuntas E, Toker A (2002) Realization of voltage and current mode KHN biquads using CCCIIs. Int J Electron Commun(AEU) 56:45–49 Altuntas E, Toker A (2002) Realization of voltage and current mode KHN biquads using CCCIIs. Int J Electron Commun(AEU) 56:45–49
25.
go back to reference Wang C, Liu H, Zhao Y (2008) A new current mode current controlled universal filter based on CCCII(±). Circ Syst Sig Process 27:673–682 Wang C, Liu H, Zhao Y (2008) A new current mode current controlled universal filter based on CCCII(±). Circ Syst Sig Process 27:673–682
26.
go back to reference Senani R, Singh VK, Singh AK, Bhaskar DR (2004) Novel electronically controllable current-mode universal biquad filter. IEICE Electron Express 1:410–415 Senani R, Singh VK, Singh AK, Bhaskar DR (2004) Novel electronically controllable current-mode universal biquad filter. IEICE Electron Express 1:410–415
27.
go back to reference Chen HP, Chu PL (2009) Versatile universal electronically tunable current-mode filter using CCCIIs. IEICE Electron Express 6:122–128 Chen HP, Chu PL (2009) Versatile universal electronically tunable current-mode filter using CCCIIs. IEICE Electron Express 6:122–128
28.
go back to reference Maheshwari S, Khan IA (2004) Novel cascadable current-mode translinear-C universal filter. Active Passive Electron Comp 27:215–218 Maheshwari S, Khan IA (2004) Novel cascadable current-mode translinear-C universal filter. Active Passive Electron Comp 27:215–218
29.
go back to reference Yuce E (2009) Current-mode electronically tunable biquadratic filters consisting of only CCCIIs and grounded capacitors. Microelectron J 40:1719–1725 Yuce E (2009) Current-mode electronically tunable biquadratic filters consisting of only CCCIIs and grounded capacitors. Microelectron J 40:1719–1725
30.
go back to reference Abuelma’atti MT (2003) A novel mixed mode current controlled current conveyor based filter. Active Passive Electron Comp 26:185–191 Abuelma’atti MT (2003) A novel mixed mode current controlled current conveyor based filter. Active Passive Electron Comp 26:185–191
31.
go back to reference Ozoguz S, Toker A (2002) Tunable ladder-type realization of current mode elliptic filters. Int J Electron Commun 56:193–199 Ozoguz S, Toker A (2002) Tunable ladder-type realization of current mode elliptic filters. Int J Electron Commun 56:193–199
32.
go back to reference Jiraseree-amornkun A, Surakampontorn W (2008) Efficient implementation of tunable ladder filters using multi-output current controlled conveyors. Int J Electron Commun 62:11–23 Jiraseree-amornkun A, Surakampontorn W (2008) Efficient implementation of tunable ladder filters using multi-output current controlled conveyors. Int J Electron Commun 62:11–23
33.
go back to reference Yuce E, Minaei S (2008) On the realization of high-order current mode filter employing current controlled conveyors. Comput Electr Eng 34:165–172MATH Yuce E, Minaei S (2008) On the realization of high-order current mode filter employing current controlled conveyors. Comput Electr Eng 34:165–172MATH
34.
go back to reference Koksal M, Sagbas M (2008) A versatile signal flow graph realization of a general current transfer function. Int J Electron Commun 62:33–40 Koksal M, Sagbas M (2008) A versatile signal flow graph realization of a general current transfer function. Int J Electron Commun 62:33–40
35.
go back to reference Ranjan A, Paul SK (2011) Nth order voltage mode active-C filter employing current controlled current conveyors. Circ Syst 2:85–90 Ranjan A, Paul SK (2011) Nth order voltage mode active-C filter employing current controlled current conveyors. Circ Syst 2:85–90
36.
go back to reference Liu SI, Yang CY (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296 Liu SI, Yang CY (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296
37.
go back to reference Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664 Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664
38.
go back to reference Fongsamut C, Anuntahirunrat K, Kumwachara K, Surakampontorn W (2006) Current conveyor-based single element controlled and current controlled sinusoidal oscillators. Int J Electron 93:467–478 Fongsamut C, Anuntahirunrat K, Kumwachara K, Surakampontorn W (2006) Current conveyor-based single element controlled and current controlled sinusoidal oscillators. Int J Electron 93:467–478
39.
go back to reference Kiranon W, Kesorn J, Wardkein P (1996) Current controlled oscillator based on translinear conveyors. Electron Lett 32:1330–1331 Kiranon W, Kesorn J, Wardkein P (1996) Current controlled oscillator based on translinear conveyors. Electron Lett 32:1330–1331
40.
go back to reference Abuelma’atti MT, Tasadduq NA (1998) A novel current controlled oscillator using translinear current conveyor. Frequenz 52:123–124 Abuelma’atti MT, Tasadduq NA (1998) A novel current controlled oscillator using translinear current conveyor. Frequenz 52:123–124
41.
go back to reference Maheshwari S (2010) Current mode third order quadrature oscillator. IET Circ Devices Syst 4:188–195 Maheshwari S (2010) Current mode third order quadrature oscillator. IET Circ Devices Syst 4:188–195
42.
go back to reference Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional-integral-derivative (PID) controller. J Electr Electron Engg 4:1243–1248 Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional-integral-derivative (PID) controller. J Electr Electron Engg 4:1243–1248
43.
go back to reference Maheshwari S, Khan IA (2005) An integrable precision rectifier with current controlled output. J Active Passive Electron Devices 1:177–182 Maheshwari S, Khan IA (2005) An integrable precision rectifier with current controlled output. J Active Passive Electron Devices 1:177–182
44.
go back to reference Anuntahirunrat K, Tangsrirat W, Riewruja V, Surakampontorn W (2004) Sinusoidal frequency doubler and full-wave rectifier based on translinear current-controlled current conveyors. Int J Electron 91:227–239 Anuntahirunrat K, Tangsrirat W, Riewruja V, Surakampontorn W (2004) Sinusoidal frequency doubler and full-wave rectifier based on translinear current-controlled current conveyors. Int J Electron 91:227–239
45.
go back to reference Siripruchyanun M, Jaikla W (2006) A novel precision current mode full wave rectifier and class B push-pull current amplifier using BiCMOS current controlled current conveyors. J KMITNB 16:1–7 Siripruchyanun M, Jaikla W (2006) A novel precision current mode full wave rectifier and class B push-pull current amplifier using BiCMOS current controlled current conveyors. J KMITNB 16:1–7
46.
go back to reference Abuelma’atti MA, Al-qahtani MA (1998) A current-mode current-controlled current-conveyor-based analogue multiplier/divider. Int J Electron 85:71–77 Abuelma’atti MA, Al-qahtani MA (1998) A current-mode current-controlled current-conveyor-based analogue multiplier/divider. Int J Electron 85:71–77
47.
go back to reference Yuce E (2008) Design of a simple current-mode multiplier topology using a single CCCII+. IEEE Trans Instrum Meas 57:631–637 Yuce E (2008) Design of a simple current-mode multiplier topology using a single CCCII+. IEEE Trans Instrum Meas 57:631–637
48.
go back to reference Petchakit W, Lorsawatsiri A, Kiranon W, Wongtaychathum C, Wardkein P (2010) Current mode squaring, square-rooting and vector summation circuits. Int J Electron Commun (AEU) 64:443–449 Petchakit W, Lorsawatsiri A, Kiranon W, Wongtaychathum C, Wardkein P (2010) Current mode squaring, square-rooting and vector summation circuits. Int J Electron Commun (AEU) 64:443–449
49.
go back to reference Dejhan K, Netbut C (2007) New simple square-rooting circuits based on translinear current conveyor. Int J Electron 94:707–723 Dejhan K, Netbut C (2007) New simple square-rooting circuits based on translinear current conveyor. Int J Electron 94:707–723
50.
go back to reference Netbut C, Kumngern M, Prommee P, Dejhan K (2007) New simple square-rooting circuits based on translinear current conveyors. ECTI Trans Electr Eng Electro Commun 5:10–17 Netbut C, Kumngern M, Prommee P, Dejhan K (2007) New simple square-rooting circuits based on translinear current conveyors. ECTI Trans Electr Eng Electro Commun 5:10–17
51.
go back to reference Abuelma’atti MT (2002) New ASK/FSK/PSK/QAM wave generator using a single current controlled multiple output current conveyor. Int J Electron 89:35–43 Abuelma’atti MT (2002) New ASK/FSK/PSK/QAM wave generator using a single current controlled multiple output current conveyor. Int J Electron 89:35–43
52.
go back to reference Barthelemy H, Fabre A (2002) A second generation current-controlled conveyor with negative intrinsic resistance. IEEE Trans CAS-I 49:63–65 Barthelemy H, Fabre A (2002) A second generation current-controlled conveyor with negative intrinsic resistance. IEEE Trans CAS-I 49:63–65
53.
go back to reference Minaei S, Kaymak D, Kuntman H (2002) New high performance realization for current-controlled conveyor (CCCII). J Electric Electron 2:547–553 Minaei S, Kaymak D, Kuntman H (2002) New high performance realization for current-controlled conveyor (CCCII). J Electric Electron 2:547–553
54.
go back to reference Chunhua W, Qiujing Z, Wei Y (2007) A second current controlled current conveyor realization using Wilson current mirror. Int J Electron 94:699–706 Chunhua W, Qiujing Z, Wei Y (2007) A second current controlled current conveyor realization using Wilson current mirror. Int J Electron 94:699–706
55.
go back to reference Ercan H, Alci M (2013) A new design for BiCMOS controlled current conveyor. Elektronika IR Elektrotechnika 19:56–60 Ercan H, Alci M (2013) A new design for BiCMOS controlled current conveyor. Elektronika IR Elektrotechnika 19:56–60
56.
go back to reference Fabre A, Saaid O, Wiest F, Boucheron C (1997) Low power current-mode second-order band pass IF filter. IEEE Trans Circ Syst-II 44:436–446 Fabre A, Saaid O, Wiest F, Boucheron C (1997) Low power current-mode second-order band pass IF filter. IEEE Trans Circ Syst-II 44:436–446
57.
go back to reference Abuelma’atti MT, Al-Zaher HA (1997) Nonlinear performance of the mixed translinear loop. Int J Electron 83:467–471 Abuelma’atti MT, Al-Zaher HA (1997) Nonlinear performance of the mixed translinear loop. Int J Electron 83:467–471
58.
go back to reference Kiranon W, Kesorn J, Sangpisit W, Kamprasert N (1997) Electronically tunable multifunctional translinear-C filter and oscillator. Electron Lett 33:573–574 Kiranon W, Kesorn J, Sangpisit W, Kamprasert N (1997) Electronically tunable multifunctional translinear-C filter and oscillator. Electron Lett 33:573–574
59.
go back to reference Abuelma’atti MT, Abed SM (1997) A new current controlled multiple output current conveyor. Proc Natl Sci Counc ROC (A) 21:616–622 Abuelma’atti MT, Abed SM (1997) A new current controlled multiple output current conveyor. Proc Natl Sci Counc ROC (A) 21:616–622
60.
go back to reference Abuelma’atti MT, Tasadduq NA (1998) Universal current-controlled current mode filters using the current controlled conveyor. Proc Natl Sci Counc ROC (A) 22:358–361 Abuelma’atti MT, Tasadduq NA (1998) Universal current-controlled current mode filters using the current controlled conveyor. Proc Natl Sci Counc ROC (A) 22:358–361
61.
go back to reference Abuelma’atti MT, Tasadduq NA (1998) Universal current-controlled current mode filters using the multiple-output translinear current conveyor. Frequenz 52:252–254 Abuelma’atti MT, Tasadduq NA (1998) Universal current-controlled current mode filters using the multiple-output translinear current conveyor. Frequenz 52:252–254
62.
go back to reference Abuelma’atti MT, Al Qahtani M (1998) Universal current-controlled current mode filters with three inputs and one output using the current controlled conveyor. Active Passive Electron Comp 21:33–41 Abuelma’atti MT, Al Qahtani M (1998) Universal current-controlled current mode filters with three inputs and one output using the current controlled conveyor. Active Passive Electron Comp 21:33–41
63.
go back to reference Abuelma’atti MT, Tasadduq NA (1998) A novel single-input multiple-output current mode current controlled universal filter. Microelectron J 29:901–905 Abuelma’atti MT, Tasadduq NA (1998) A novel single-input multiple-output current mode current controlled universal filter. Microelectron J 29:901–905
64.
go back to reference Abuelma’atti MT (1998) Comment: floating inductance simulation based on current conveyors. Electron Lett 34:1037–1038 Abuelma’atti MT (1998) Comment: floating inductance simulation based on current conveyors. Electron Lett 34:1037–1038
65.
go back to reference Abuelma’atti MT, Al-Qahtani MA (1999) On the realization of the current controlled current-mode amplifier using the current controlled conveyor. Int J Electron 86:1333–1340 Abuelma’atti MT, Al-Qahtani MA (1999) On the realization of the current controlled current-mode amplifier using the current controlled conveyor. Int J Electron 86:1333–1340
66.
go back to reference Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron J 30:157–160 Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron J 30:157–160
67.
go back to reference Khan IA, Zaid MH (2000) Multifunctional translinear-C current mode filter. Int J Electron 87:1047–1051 Khan IA, Zaid MH (2000) Multifunctional translinear-C current mode filter. Int J Electron 87:1047–1051
68.
go back to reference Barthelemy H, Fabre A (2000) A new floating controlled resistance operating in class AB. IEEE Trans Circ Syst-I 47:67–72 Barthelemy H, Fabre A (2000) A new floating controlled resistance operating in class AB. IEEE Trans Circ Syst-I 47:67–72
69.
go back to reference Seguin F, Fabre A (2001) 2 GHz controlled current conveyor in standard 0.8 μm BiCMOS technology. Electron Lett 37:329–330 Seguin F, Fabre A (2001) 2 GHz controlled current conveyor in standard 0.8 μm BiCMOS technology. Electron Lett 37:329–330
70.
go back to reference Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2001) High output impedance current-mode low pass, band pass and high pass filters using current controlled conveyors. Int J Electron 88:915–922 Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2001) High output impedance current-mode low pass, band pass and high pass filters using current controlled conveyors. Int J Electron 88:915–922
71.
go back to reference Minaei S, Turkoz S (2001) Erratum ‘New current mode current controlled universal filter with single input and three outputs’. Int J Electron 88:955 Minaei S, Turkoz S (2001) Erratum ‘New current mode current controlled universal filter with single input and three outputs’. Int J Electron 88:955
72.
go back to reference Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912 Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912
73.
go back to reference Maheshwari S (2003) Active-only current controlled summing/difference amplifiers using CCCIIs. Active Passive Electron Comp 26:231–234 Maheshwari S (2003) Active-only current controlled summing/difference amplifiers using CCCIIs. Active Passive Electron Comp 26:231–234
74.
go back to reference Maheshwari S, Khan IA (2003) Simple first-order translinear-C current mode all pass sections. Int J Electron 90:79–85 Maheshwari S, Khan IA (2003) Simple first-order translinear-C current mode all pass sections. Int J Electron 90:79–85
75.
go back to reference Shah NA, Iqbal SZ (2003) Current mode active only universal filter. Int J Electron 90:407–411 Shah NA, Iqbal SZ (2003) Current mode active only universal filter. Int J Electron 90:407–411
76.
go back to reference Maheshwari S (2003) Electronically-tunable quadrature oscillator using translinear conveyors and grounded capacitors. Active Passive Electron Comp 26:193–196 Maheshwari S (2003) Electronically-tunable quadrature oscillator using translinear conveyors and grounded capacitors. Active Passive Electron Comp 26:193–196
77.
go back to reference Maheshwari S (2004) New voltage and current mode APS using current controlled conveyor. Int J Electron 91:735–743 Maheshwari S (2004) New voltage and current mode APS using current controlled conveyor. Int J Electron 91:735–743
78.
go back to reference Minaei S, Turkoz S (2004) Current mode electronically tunable universal filter using only plus-type current controlled conveyors and grounded capacitors. ETRI J 26:292–296 Minaei S, Turkoz S (2004) Current mode electronically tunable universal filter using only plus-type current controlled conveyors and grounded capacitors. ETRI J 26:292–296
79.
go back to reference Sagbas M, Fidanboylu K (2004) Electronically-tunable current-mode second-order universal filter using minimum elements. Electron Lett 40:2–3 Sagbas M, Fidanboylu K (2004) Electronically-tunable current-mode second-order universal filter using minimum elements. Electron Lett 40:2–3
80.
go back to reference Chang CM, Al-Hashimi BM, Ross JN (2004) Unified active filter biquad structures. IEE Proc Circ Devices Syst 151:273–277 Chang CM, Al-Hashimi BM, Ross JN (2004) Unified active filter biquad structures. IEE Proc Circ Devices Syst 151:273–277
81.
go back to reference Shah NA, Rather MF, Iqbal SZ (2005) Electronically-tunable high output impedance current mode universal filter. J Active Passive Electron Devices 1:163–169 Shah NA, Rather MF, Iqbal SZ (2005) Electronically-tunable high output impedance current mode universal filter. J Active Passive Electron Devices 1:163–169
82.
go back to reference Pandey N, Paul SK, Bhattacharyya A, Jain SB (2005) A novel current controlled current mode universal filter: SITO approach. IEICE Electron Express 2:451–457 Pandey N, Paul SK, Bhattacharyya A, Jain SB (2005) A novel current controlled current mode universal filter: SITO approach. IEICE Electron Express 2:451–457
83.
go back to reference Yuce E, Minaei S, Metin B (2005) Comment Electronically tunable current mode second order universal filters using minimum elements. Electron Lett 41:453 Yuce E, Minaei S, Metin B (2005) Comment Electronically tunable current mode second order universal filters using minimum elements. Electron Lett 41:453
84.
go back to reference Senani R, Singh VK, Singh AK, Bhaskar DR (2005) Tunable current-mode universal biquads employing only three MOCCs and all grounded passive elements: additional new realizations. Frequenz 59:220–224 Senani R, Singh VK, Singh AK, Bhaskar DR (2005) Tunable current-mode universal biquads employing only three MOCCs and all grounded passive elements: additional new realizations. Frequenz 59:220–224
85.
go back to reference Maheshwari S, Khan IA (2005) High performance versatile translinear-C universal filter. J Active Passive Electron Devices 1:41–51 Maheshwari S, Khan IA (2005) High performance versatile translinear-C universal filter. J Active Passive Electron Devices 1:41–51
86.
go back to reference Zouaoui-Abouda H, Fabre A (2006) New high-value floating controlled resistor in CMOS technology. IEEE Trans Instrum Meas 55:1017–1020 Zouaoui-Abouda H, Fabre A (2006) New high-value floating controlled resistor in CMOS technology. IEEE Trans Instrum Meas 55:1017–1020
87.
go back to reference Tangsrirat W, Surakampontorn W (2006) Electronically-tunable current-mode universal filter employing only plus-type current-controlled conveyors and grounded capacitors. Circ Syst Sig Process 25:701–713MATH Tangsrirat W, Surakampontorn W (2006) Electronically-tunable current-mode universal filter employing only plus-type current-controlled conveyors and grounded capacitors. Circ Syst Sig Process 25:701–713MATH
88.
go back to reference Shah NA, Rather MF, Iqbal SZ (2006) SIFO electronically tunable current-mode cascadable active only universal filter. J Active Passive Electron Devices 8:327–334 Shah NA, Rather MF, Iqbal SZ (2006) SIFO electronically tunable current-mode cascadable active only universal filter. J Active Passive Electron Devices 8:327–334
89.
go back to reference Shah NA, Rather MF, Iqbal SZ (2006) SITO electronically tunable high output impedance current mode universal filter. Analog Integr Circ Sig Process 47:335–338 Shah NA, Rather MF, Iqbal SZ (2006) SITO electronically tunable high output impedance current mode universal filter. Analog Integr Circ Sig Process 47:335–338
90.
go back to reference Yuce E, Minaei S, Cicekoglu O (2006) Universal current-mode active-C filter employing minimum number of passive elements. Analog Integr Circ Sig Process 46:169–171 Yuce E, Minaei S, Cicekoglu O (2006) Universal current-mode active-C filter employing minimum number of passive elements. Analog Integr Circ Sig Process 46:169–171
91.
go back to reference Metin B, Minaei S, Cicekoglu O (2007) Enhanced dynamic range analog filter topologies with a notch/all pass circuit example. Analog Integr Circ Sig Process 51:181–189 Metin B, Minaei S, Cicekoglu O (2007) Enhanced dynamic range analog filter topologies with a notch/all pass circuit example. Analog Integr Circ Sig Process 51:181–189
92.
go back to reference Siripruchyanun M, Jaikla W (2007) Three input single-output electronically controllable dual-mode universal biquad filter using DO-CCCIIs. Active Passive Electron Comp Article ID 36849 Siripruchyanun M, Jaikla W (2007) Three input single-output electronically controllable dual-mode universal biquad filter using DO-CCCIIs. Active Passive Electron Comp Article ID 36849
93.
go back to reference Chang CM, Huang TH, Tu SH, Hou CL, Horng JW (2007) Universal active current filter using single second-generation current controlled conveyor. Int J Circ Syst Sig Process 1:194–198 Chang CM, Huang TH, Tu SH, Hou CL, Horng JW (2007) Universal active current filter using single second-generation current controlled conveyor. Int J Circ Syst Sig Process 1:194–198
94.
go back to reference Minaei S, Yuce E (2007) Current-mode active–C filter employing reduced number of CCCII+ s. J Circ Syst Comput 16:507–515 Minaei S, Yuce E (2007) Current-mode active–C filter employing reduced number of CCCII+ s. J Circ Syst Comput 16:507–515
95.
go back to reference Maheshwari S (2007) A new current-mode current-controlled all-pass section. J Circ Syst Comput 16:181–189 Maheshwari S (2007) A new current-mode current-controlled all-pass section. J Circ Syst Comput 16:181–189
96.
go back to reference Yuce E (2007) Comment on SITO electronically tunable high output impedance current-mode universal filter. Analog Integr Circ Sig Process 50:271–272 Yuce E (2007) Comment on SITO electronically tunable high output impedance current-mode universal filter. Analog Integr Circ Sig Process 50:271–272
97.
go back to reference Keskin AU, Cam U (2007) Insensitive high-output impedance minimum configuration SITO type current mode biquad using dual-output current conveyors and grounded passive. Comp Int J Electron Commun 61:341–344 Keskin AU, Cam U (2007) Insensitive high-output impedance minimum configuration SITO type current mode biquad using dual-output current conveyors and grounded passive. Comp Int J Electron Commun 61:341–344
98.
go back to reference Yuce E, Tokat S, Minaei S, Cicekoglu O (2007) Stability problems in universal current mode filters. Int J Electron Commun (AEU) 61:580–588 Yuce E, Tokat S, Minaei S, Cicekoglu O (2007) Stability problems in universal current mode filters. Int J Electron Commun (AEU) 61:580–588
99.
go back to reference Tangsrirat W (2007) Current-tunable current mode multifunction filter based on dual output current controlled conveyors. Int J Electron Commun (AEU) 61:528–533 Tangsrirat W (2007) Current-tunable current mode multifunction filter based on dual output current controlled conveyors. Int J Electron Commun (AEU) 61:528–533
100.
go back to reference Tangsrirat W, Surakampontorn W (2007) High output impedance current mode universal filter employing dual-output current controlled conveyors and grounded capacitors. Int J Electron Commun(AEU) 61:127–131 Tangsrirat W, Surakampontorn W (2007) High output impedance current mode universal filter employing dual-output current controlled conveyors and grounded capacitors. Int J Electron Commun(AEU) 61:127–131
101.
go back to reference Tsukutani T, Sumi Y, Yabuki N (2007) Versatile current-mode biquadratic circuit using only plus type CCCIIs and grounded capacitors. Int J Electron 94:1147–1156 Tsukutani T, Sumi Y, Yabuki N (2007) Versatile current-mode biquadratic circuit using only plus type CCCIIs and grounded capacitors. Int J Electron 94:1147–1156
102.
go back to reference Pandey N, Paul SK, Jain SB, Bhattacharyya A (2007) Generalized mixed mode universal filter realization using current controlled conveyors. HAIT J Sci Eng: 1–17 Pandey N, Paul SK, Jain SB, Bhattacharyya A (2007) Generalized mixed mode universal filter realization using current controlled conveyors. HAIT J Sci Eng: 1–17
103.
go back to reference Maheshwari S, Khan IA (2007) Novel voltage/current mode translinear-C quadrature oscillator. J Active Passive Electron Devices 2:235–239 Maheshwari S, Khan IA (2007) Novel voltage/current mode translinear-C quadrature oscillator. J Active Passive Electron Devices 2:235–239
104.
go back to reference Tangsrirat W (2007) Current-tunable current-mode multifunction filter based on dual-output current- controlled conveyors. Int J of Electron Commun (AEU) 61:528–523 Tangsrirat W (2007) Current-tunable current-mode multifunction filter based on dual-output current- controlled conveyors. Int J of Electron Commun (AEU) 61:528–523
105.
go back to reference Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173 Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173
106.
go back to reference Pandey N, Paul SK, Jain SB (2008) New high-input impedance voltage-mode universal biquad: multi input multi output. J Active Passive Electron Devices 3:93–100 Pandey N, Paul SK, Jain SB (2008) New high-input impedance voltage-mode universal biquad: multi input multi output. J Active Passive Electron Devices 3:93–100
107.
go back to reference Yuce E, Kircay A, Tokat S (2008) Universal resistorless current mode filters employing CCCIIs. Int J Circ Theor Appl 36:739–755MATH Yuce E, Kircay A, Tokat S (2008) Universal resistorless current mode filters employing CCCIIs. Int J Circ Theor Appl 36:739–755MATH
108.
go back to reference Oztayfun S, Kilinc S, Celebi A, Cam U (2008) A new electronically tunable phase shifter employing current controlled current conveyors. Int J Electron Commun 62:228–231 Oztayfun S, Kilinc S, Celebi A, Cam U (2008) A new electronically tunable phase shifter employing current controlled current conveyors. Int J Electron Commun 62:228–231
109.
go back to reference Yuce E, Minaei S (2008) Universal current-mode filters and parasitic impedance effects on the filter performances. Int J Circ Theor Appl 36:161–171 Yuce E, Minaei S (2008) Universal current-mode filters and parasitic impedance effects on the filter performances. Int J Circ Theor Appl 36:161–171
110.
go back to reference Pandey N, Paul SK (2008) A novel electronically tunable sinusoidal oscillator based on CCCII (−IR). J Active Passive Electron Devices 3:135–141 Pandey N, Paul SK (2008) A novel electronically tunable sinusoidal oscillator based on CCCII (−IR). J Active Passive Electron Devices 3:135–141
111.
go back to reference Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review and new proposals. Radioeng J 17:15–32 Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review and new proposals. Radioeng J 17:15–32
112.
go back to reference Siripruchyanun M, Chanapromma C, Silapan P, Jaikla W (2008) BiCMOS current-controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Trans Electron 5:203–219 Siripruchyanun M, Chanapromma C, Silapan P, Jaikla W (2008) BiCMOS current-controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Trans Electron 5:203–219
113.
go back to reference Siripruchyanun M (2008) A current-mode analog multiplier/divider based on CCCDTA. Int J Electron Commun (AEU) 62:223–227 Siripruchyanun M (2008) A current-mode analog multiplier/divider based on CCCDTA. Int J Electron Commun (AEU) 62:223–227
114.
go back to reference Soliman AM (2009) Comment on: realization of voltage and current mode KHN biquads using CCCII. Int J Electron Commun 63:877 Soliman AM (2009) Comment on: realization of voltage and current mode KHN biquads using CCCII. Int J Electron Commun 63:877
115.
go back to reference Siripruchyanun M, Jaikla W (2009) Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA. Circ Syst Sig Process 28:99–110MATH Siripruchyanun M, Jaikla W (2009) Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA. Circ Syst Sig Process 28:99–110MATH
116.
go back to reference Tangsrirat W, Surakampontorn W (2009) Low component current mode universal filter using current controlled conveyors and grounded capacitors. J Active Passive Electron Devices 8:259–264 Tangsrirat W, Surakampontorn W (2009) Low component current mode universal filter using current controlled conveyors and grounded capacitors. J Active Passive Electron Devices 8:259–264
117.
go back to reference Shah NA, Rather MF (2009) Electronically tunable current mode/mixed-mode/voltage mode multifunction active only biquads. J Active Passive Electron Devices 8:223–235 Shah NA, Rather MF (2009) Electronically tunable current mode/mixed-mode/voltage mode multifunction active only biquads. J Active Passive Electron Devices 8:223–235
118.
go back to reference Lahiri A (2010) Current controlled inductor simulation using dual-output current controlled conveyors. J Active Passive Electron Devices 5:191–195 Lahiri A (2010) Current controlled inductor simulation using dual-output current controlled conveyors. J Active Passive Electron Devices 5:191–195
119.
go back to reference Pandey N, Paul SK (2010) Digitally switched current mode universal filter. J Active Passive Electron Devices 5:197–208 Pandey N, Paul SK (2010) Digitally switched current mode universal filter. J Active Passive Electron Devices 5:197–208
120.
go back to reference Kummgern M, Jongchanachavawat W, Dejhan K (2010) New electronically tunable current mode universal biquad filter using translinear current conveyors. Int J Electron 97:511–523 Kummgern M, Jongchanachavawat W, Dejhan K (2010) New electronically tunable current mode universal biquad filter using translinear current conveyors. Int J Electron 97:511–523
121.
go back to reference Sotner R, Slezak J, Dostal T, Petrzela J (2010) Universal tunable current mode biquad employing distributed feedback structure with MO-CCCII. J Electr Eng 61:52–56 Sotner R, Slezak J, Dostal T, Petrzela J (2010) Universal tunable current mode biquad employing distributed feedback structure with MO-CCCII. J Electr Eng 61:52–56
122.
go back to reference Sagbas M, Ayten UE, Sedef H, Koksal M (2011) Reply to comment on “Electronically tunable floating inductance simulator”. Int J Electron Commun(AEU) 66:86–88 Sagbas M, Ayten UE, Sedef H, Koksal M (2011) Reply to comment on “Electronically tunable floating inductance simulator”. Int J Electron Commun(AEU) 66:86–88
123.
go back to reference Tangsrirat W, Channumsin O (2011) Minimum-component current-mode universal filter. Ind J Pure Appl Physics 49:137–141 Tangsrirat W, Channumsin O (2011) Minimum-component current-mode universal filter. Ind J Pure Appl Physics 49:137–141
124.
go back to reference Wang C, Xu J, Keskin AU, Du S, Zhang Q (2011) A new current mode current controlled SIMO type universal filter. Int J Electron Commun 65:231–234 Wang C, Xu J, Keskin AU, Du S, Zhang Q (2011) A new current mode current controlled SIMO type universal filter. Int J Electron Commun 65:231–234
125.
go back to reference Lahiri A (2011) Deriving (MO) (I) CCCII based second order sinusoidal oscillators with non-interactive tuning laws using state variable method. Radioengineering 20:349–353 Lahiri A (2011) Deriving (MO) (I) CCCII based second order sinusoidal oscillators with non-interactive tuning laws using state variable method. Radioengineering 20:349–353
126.
go back to reference Saied AB, Salem SB, Masmoudi DS (2011) A new CMOS current controlled quadrature oscillator based on a MCCII. Circ Syst 2:269–273 Saied AB, Salem SB, Masmoudi DS (2011) A new CMOS current controlled quadrature oscillator based on a MCCII. Circ Syst 2:269–273
127.
go back to reference Yasin MY, Gopal B (2011) High frequency oscillator design using a single 45 nm CMOS current controlled current conveyor (CCCII+) with minimum passive components. Circ Syst 2:53–59 Yasin MY, Gopal B (2011) High frequency oscillator design using a single 45 nm CMOS current controlled current conveyor (CCCII+) with minimum passive components. Circ Syst 2:53–59
128.
go back to reference Fakhfakh M, Pierzchala M, Rodanski B (2012) On the design of active inductors with current-controlled voltage sources. Analog Integr Circ Sig Process 73:89–98 Fakhfakh M, Pierzchala M, Rodanski B (2012) On the design of active inductors with current-controlled voltage sources. Analog Integr Circ Sig Process 73:89–98
129.
go back to reference Metin B, Pal K, Cicekoglu O (2012) A new approach for high-input impedance in voltage mode filters using first-generation current conveyor in place of second-generation current conveyor. Int J Electron 99:131–139 Metin B, Pal K, Cicekoglu O (2012) A new approach for high-input impedance in voltage mode filters using first-generation current conveyor in place of second-generation current conveyor. Int J Electron 99:131–139
130.
go back to reference Yildiz HA, Toker A, Ozoguz S (2013) Biquadratic filter applications using a fully differential active-only integrator. Radioengineering 22:3–13 Yildiz HA, Toker A, Ozoguz S (2013) Biquadratic filter applications using a fully differential active-only integrator. Radioengineering 22:3–13
131.
go back to reference Srisakultiew S, Lawanwisut S, Siripruchyanun M (2013) A current mode electronically controllable multifunction biquadratic filter using CCCIIs. Int J Adv Telecommun Electron Sig Syst 2:45–50 Srisakultiew S, Lawanwisut S, Siripruchyanun M (2013) A current mode electronically controllable multifunction biquadratic filter using CCCIIs. Int J Adv Telecommun Electron Sig Syst 2:45–50
132.
go back to reference Pandey N, Paul SK (2013) Mixed mode universal filter. J Circ Syst Comput 22:1250064-1–1250064-10 Pandey N, Paul SK (2013) Mixed mode universal filter. J Circ Syst Comput 22:1250064-1–1250064-10
Metadata
Title
Second Generation Controlled Current Conveyors (CCCII) and Their Applications
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_9