Skip to main content
Top

2015 | OriginalPaper | Chapter

15.  Second Generation Miscellaneous Linear/Nonlinear Applications of Various Types of Current Conveyors

Authors : Raj Senani, D. R. Bhaskar, A. K. Singh

Published in: Current Conveyors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Miscellaneous linear and non-linear applications of varieties of CCs have been elaborated in this chapter. The functional circuits described include instrumentation amplifier, PID controllers, single ended to differential converters, precision rectifiers, astable and monostable multivibrators, square/triangular wave generator and chaos generator, analog multiplier/dividers, squares and square rooters, mutators and memristive and memcapacitive emulators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For some applications not included here, such as synthesis of open circuit impedance matrix of LTI multiport using CCs CCII based high impedance input stage for biomedical applications and for an interesting tutorial on some other applications of CCs, the readers are referred to [4448], respectively.
 
Literature
1.
go back to reference Yuce E, Tokat S, Kizilkaya A, Cicekoglu O (2006) CCII-based PID controllers employing grounded passive components. Int J Electron Commun 60:399–403CrossRef Yuce E, Tokat S, Kizilkaya A, Cicekoglu O (2006) CCII-based PID controllers employing grounded passive components. Int J Electron Commun 60:399–403CrossRef
2.
go back to reference Yuce E, Minaei S (2010) New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectron J 41:311–316CrossRef Yuce E, Minaei S (2010) New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectron J 41:311–316CrossRef
3.
go back to reference Godara B, Fabre A (2008) A new application of current conveyors: the design of wideband controllable low-noise amplifiers. Radioengineering 17:91–100 Godara B, Fabre A (2008) A new application of current conveyors: the design of wideband controllable low-noise amplifiers. Radioengineering 17:91–100
4.
go back to reference Centurelli F, Diqual M, Ferri G, Guerrini NC, Scotti G, Trifiletti A (2005) A novel dual-output CCII-based single ended to differential converter. Analog Integr Circ Sig Process 43:87–90CrossRef Centurelli F, Diqual M, Ferri G, Guerrini NC, Scotti G, Trifiletti A (2005) A novel dual-output CCII-based single ended to differential converter. Analog Integr Circ Sig Process 43:87–90CrossRef
5.
go back to reference Koton J, Herencsar N, Vrba K (2011) Current and voltage conveyors in current-and voltage-mode precision full-wave rectifiers. Radioengineering 20:19–24 Koton J, Herencsar N, Vrba K (2011) Current and voltage conveyors in current-and voltage-mode precision full-wave rectifiers. Radioengineering 20:19–24
6.
go back to reference Kumngern M (2011) Precision full-wave rectifier using two DDCCs. Circ Syst 2:127–132CrossRef Kumngern M (2011) Precision full-wave rectifier using two DDCCs. Circ Syst 2:127–132CrossRef
7.
go back to reference Minaei S, Yuce E (2008) A new full-wave rectifier circuit employing single dual-X current conveyor. Int J Electron 95:777–784CrossRef Minaei S, Yuce E (2008) A new full-wave rectifier circuit employing single dual-X current conveyor. Int J Electron 95:777–784CrossRef
8.
go back to reference Koton J, Herencsar N, Vrba K (2010) Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electron Express 7:844–849CrossRef Koton J, Herencsar N, Vrba K (2010) Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electron Express 7:844–849CrossRef
9.
go back to reference Monpapassorn A (2013) Low output impedance dual CCII full-wave rectifier. Int J Electron 100:648–654CrossRef Monpapassorn A (2013) Low output impedance dual CCII full-wave rectifier. Int J Electron 100:648–654CrossRef
10.
go back to reference Kumngern M, Knobnob B, Dejhan K (2010) High frequency and high precision CMOS Half-wave rectifier. Circ Syst Sig Process 29:815–836CrossRefMATH Kumngern M, Knobnob B, Dejhan K (2010) High frequency and high precision CMOS Half-wave rectifier. Circ Syst Sig Process 29:815–836CrossRefMATH
11.
go back to reference Marcellis AD, Carlo CD, Ferri G, Stornelli V (2013) A CCII-based wide frequency range square waveform generator. Int J Circ Theor Appl 41:1–13 Marcellis AD, Carlo CD, Ferri G, Stornelli V (2013) A CCII-based wide frequency range square waveform generator. Int J Circ Theor Appl 41:1–13
12.
go back to reference Chien H-C (2012) Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectron J 43:962–974CrossRef Chien H-C (2012) Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectron J 43:962–974CrossRef
13.
go back to reference Chien HC (2011) Switch-controllable dual-hysteresis mode bistable multivibrator employing single differential voltage current conveyor. Microelectron J 42:745–753CrossRef Chien HC (2011) Switch-controllable dual-hysteresis mode bistable multivibrator employing single differential voltage current conveyor. Microelectron J 42:745–753CrossRef
14.
go back to reference Chien HC, Lo YK (2011) Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectron J 42:1107–1115CrossRef Chien HC, Lo YK (2011) Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectron J 42:1107–1115CrossRef
15.
go back to reference Chien HC (2013) Design and implementation of relaxation generators: new application circuits of the DVCC. Int J Electron 100:227–244CrossRef Chien HC (2013) Design and implementation of relaxation generators: new application circuits of the DVCC. Int J Electron 100:227–244CrossRef
16.
go back to reference Chien HC (2013) Square/triangular wave generator using single DO-DVCC and three grounded passive components. Am J Electr Electron Eng 1:32–36CrossRef Chien HC (2013) Square/triangular wave generator using single DO-DVCC and three grounded passive components. Am J Electr Electron Eng 1:32–36CrossRef
17.
go back to reference Godara B, Fabre A (2007) Versatile wideband impedance matching circuit based on current conveyors. Electron Lett 43:37–38 Godara B, Fabre A (2007) Versatile wideband impedance matching circuit based on current conveyors. Electron Lett 43:37–38
18.
go back to reference Godara B, Fabre A (2008) The first active tunable wideband impedance matching circuit. Electroscope Appl Electron 2008:7p Godara B, Fabre A (2008) The first active tunable wideband impedance matching circuit. Electroscope Appl Electron 2008:7p
19.
go back to reference Hwang YS, Chen JJ, Wu SY, Liao LP, Tsai CC (2007) A new pipelined analog-to-digital converter using current conveyors. Analog Integr Circ Sig Process 50:213–220CrossRef Hwang YS, Chen JJ, Wu SY, Liao LP, Tsai CC (2007) A new pipelined analog-to-digital converter using current conveyors. Analog Integr Circ Sig Process 50:213–220CrossRef
20.
go back to reference Hwang YS, Wang SF, Sheu P-W, Chen JJ (2008) Novel FBCCII-based sample and hold and MDAC circuits. Int J Electron 95:1111–1117CrossRef Hwang YS, Wang SF, Sheu P-W, Chen JJ (2008) Novel FBCCII-based sample and hold and MDAC circuits. Int J Electron 95:1111–1117CrossRef
21.
go back to reference Petrzela J, Hrubos Z, Gotthans T (2011) Modeling deterministic chaos using electronic circuits. Radioengineering 20:438–444 Petrzela J, Hrubos Z, Gotthans T (2011) Modeling deterministic chaos using electronic circuits. Radioengineering 20:438–444
22.
go back to reference Ozoguz S, Elwakil AS, Kennedy MP (2002) Experimental verification of the butterfly attractor in a modified Lorenz system. Int J Bifurc Chaos 12:1627–1632CrossRef Ozoguz S, Elwakil AS, Kennedy MP (2002) Experimental verification of the butterfly attractor in a modified Lorenz system. Int J Bifurc Chaos 12:1627–1632CrossRef
23.
go back to reference Elwakil AS, Kennedy MP (2000) Novel chaotic oscillator configuration using a diode-inductor composite. Int J Electron 87:397–406CrossRef Elwakil AS, Kennedy MP (2000) Novel chaotic oscillator configuration using a diode-inductor composite. Int J Electron 87:397–406CrossRef
24.
go back to reference Gandhi G (2006) An improved Chua’s circuit and its use in hyperchaotic circuit. Analog Integr Circ Sig Process 46:173–178CrossRef Gandhi G (2006) An improved Chua’s circuit and its use in hyperchaotic circuit. Analog Integr Circ Sig Process 46:173–178CrossRef
25.
go back to reference Senani R, Gupta SS (1998) Implementation of Chua’s chaotic circuit using current feedback op-amp. Electron Lett 34:829–830CrossRef Senani R, Gupta SS (1998) Implementation of Chua’s chaotic circuit using current feedback op-amp. Electron Lett 34:829–830CrossRef
26.
go back to reference Chua LO (1968) Synthesis of new nonlinear network elements. Proc IEEE 56:1325–1340CrossRef Chua LO (1968) Synthesis of new nonlinear network elements. Proc IEEE 56:1325–1340CrossRef
27.
go back to reference Chua LO (1967) The rotator-A new network component. Proc IEEE 55:1566–1577CrossRef Chua LO (1967) The rotator-A new network component. Proc IEEE 55:1566–1577CrossRef
28.
go back to reference Smith KC, Sedra A (1970) Realization of the Chua family of new nonlinear network elements using the current conveyor. IEEE Trans Circ Theor 17:137–139CrossRef Smith KC, Sedra A (1970) Realization of the Chua family of new nonlinear network elements using the current conveyor. IEEE Trans Circ Theor 17:137–139CrossRef
29.
go back to reference Soliman AM (1972) Two new LC mutators and their realizations. IEEE Trans Circ Theor 19:171–172CrossRef Soliman AM (1972) Two new LC mutators and their realizations. IEEE Trans Circ Theor 19:171–172CrossRef
30.
go back to reference Soliman AM (1973) New L-R mutators and their models. Int J Electron 34:753–756CrossRef Soliman AM (1973) New L-R mutators and their models. Int J Electron 34:753–756CrossRef
31.
go back to reference Higashimura M, Fukui Y (1988) Type 1 mutator using current conveyor and its application to immittance simulation. Int J Electron 64:377–383CrossRef Higashimura M, Fukui Y (1988) Type 1 mutator using current conveyor and its application to immittance simulation. Int J Electron 64:377–383CrossRef
32.
go back to reference Ikeda K, Tomita Y (1976–1990) A realization of third-order CR oscillator using D-R mutator. IEICE Trans E71:51–55 Ikeda K, Tomita Y (1976–1990) A realization of third-order CR oscillator using D-R mutator. IEICE Trans E71:51–55
33.
go back to reference Yasushi T, Masahiro A (2001) A multi-port D-R mutator using CCIIs with current followers. Int J Electron 88:31–39CrossRef Yasushi T, Masahiro A (2001) A multi-port D-R mutator using CCIIs with current followers. Int J Electron 88:31–39CrossRef
34.
go back to reference Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191CrossRefMATH Soliman AM (2010) New CCII and ICCII based realizations of L-C and L-R mutators. Circ Syst Sig Process 29:1181–1191CrossRefMATH
35.
go back to reference Swamy MNS (2011) Mutators, Generalized impedance converters and inverters, and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MathSciNetCrossRefMATH Swamy MNS (2011) Mutators, Generalized impedance converters and inverters, and their realization using generalized current conveyors. Circ Syst Sig Process 30:209–232MathSciNetCrossRefMATH
36.
go back to reference Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRef Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRef
37.
go back to reference Chua LN (1971) Memristor-the missing circuit element. IEEE Trans Circ Theor 18:507–519CrossRef Chua LN (1971) Memristor-the missing circuit element. IEEE Trans Circ Theor 18:507–519CrossRef
38.
go back to reference Ventra MD, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97:1717–1724CrossRef Ventra MD, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97:1717–1724CrossRef
39.
go back to reference Pershin YV, Ventra MD (2010) Memristive circuits simulate memcapacitors and meminductors. Electron Lett 46:517–518CrossRef Pershin YV, Ventra MD (2010) Memristive circuits simulate memcapacitors and meminductors. Electron Lett 46:517–518CrossRef
40.
go back to reference Pershin YV, Ventra MD (2011) Emulation of floating memcapacitors and meminductors using current conveyors. Electron Lett 47:243–244CrossRef Pershin YV, Ventra MD (2011) Emulation of floating memcapacitors and meminductors using current conveyors. Electron Lett 47:243–244CrossRef
41.
go back to reference Esch J (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97:1715–1716CrossRef Esch J (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97:1715–1716CrossRef
42.
go back to reference Biolek D, Biolkova V (2010) Mutator for transforming memristor into memcapacitor. Electron Lett 46:1428–1429CrossRef Biolek D, Biolkova V (2010) Mutator for transforming memristor into memcapacitor. Electron Lett 46:1428–1429CrossRef
43.
go back to reference Yu DS, Liang Y, Chen H, Iu HHC (2013) Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans Circ Syst-II 60:207–211 Yu DS, Liang Y, Chen H, Iu HHC (2013) Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans Circ Syst-II 60:207–211
44.
go back to reference Hou CL, Yeh SN, Huang CC (2004) A synthetic network using current conveyors of the open-circuit impedance matrix of a linear time-invariant multiport. Int J Electron 91:165–174CrossRef Hou CL, Yeh SN, Huang CC (2004) A synthetic network using current conveyors of the open-circuit impedance matrix of a linear time-invariant multiport. Int J Electron 91:165–174CrossRef
45.
go back to reference Ferri G, Stornelli V, Simone AD (2011) A CCII-based high impedance input stage for biomedical applications. J Circ Syst Comput 20:1441–1447CrossRef Ferri G, Stornelli V, Simone AD (2011) A CCII-based high impedance input stage for biomedical applications. J Circ Syst Comput 20:1441–1447CrossRef
46.
go back to reference Rajput SS, Jamuar SS (2007) Advanced applications of current conveyors: a tutorial. J Active Passiv Electron Devices 2:143–164 Rajput SS, Jamuar SS (2007) Advanced applications of current conveyors: a tutorial. J Active Passiv Electron Devices 2:143–164
47.
go back to reference Ghallab YH, Badawy W, Kaler VIS, Maundy BJ (2005) A novel current-mode instrumentation amplifier based on operational floating current conveyor. IEEE Trans Instrum Meas 54:1941–1949CrossRef Ghallab YH, Badawy W, Kaler VIS, Maundy BJ (2005) A novel current-mode instrumentation amplifier based on operational floating current conveyor. IEEE Trans Instrum Meas 54:1941–1949CrossRef
48.
go back to reference Elwakil AS, Soliman AM (1997) Current mode chaos generator. Electron Lett 33:1661–1662CrossRef Elwakil AS, Soliman AM (1997) Current mode chaos generator. Electron Lett 33:1661–1662CrossRef
Metadata
Title
Second Generation Miscellaneous Linear/Nonlinear Applications of Various Types of Current Conveyors
Authors
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_15