Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 2/2021

29-06-2021 | Original Paper

Second harmonic generation in a graphene-based plasmonic waveguide

Authors: Vahid Khalili Sadaghiani, Mohammad Bagher Tavakoli, Ashkan Horri

Published in: Photonic Network Communications | Issue 2/2021

Login to get access
share
SHARE

Abstract

Lithium niobate nanophotonic structures have recently become a promising candidate for efficient nonlinear frequency-conversion processes. Here, the second harmonic generation in a graphene-based LN waveguide is theoretically proposed at the telecommunication band. The structure is able to gain high conversion efficiency due to the large nonlinear coefficient of LN and tight field confinement. The subwavelength mode confinement inside the LN layer is strongly influenced by the graphene conductivity. In the presented structure, the nonlinear interaction of propagating plasmons can be widely tuned by slightly change in the surface conductivity of graphene monolayer which is a promising feature for SHG applications in comparison to the conventional structures which rely on geometry variation. According to the results, SH intensity of \(I_{{{\text{SH}}}} = 0.09\,{\text{kW}}/{\text{cm}}^{2}\) is observed at the fundamental wavelength of \(1550\,{\text{nm}}\) with a 7% of nonlinear conversion efficiency. To analyze the geometrical parameters and show the tunability of the configuration, the effect of input frequency and waveguide length on SH output power are demonstrated at \(P_{{{\text{FF}}}} = 1W\) and μc = 0.6 eV. The calculations reveal that the \(P_{{{\text{SH}}}}\) becomes lower by lengthening the waveguide where the maximum output of \(P_{{{\text{SH}}}} = 72.5\,{\text{mW}}\) is obtained at 1 μm-long waveguide.
Footnotes
1
Lithium niobate.
 
Literature
1.
go back to reference Lin, J., et al.: Phase-matched second-harmonic generation in an on-chip LiNbO 3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016) CrossRef Lin, J., et al.: Phase-matched second-harmonic generation in an on-chip LiNbO 3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016) CrossRef
2.
go back to reference Luo, R., et al.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017) CrossRef Luo, R., et al.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017) CrossRef
3.
go back to reference Hao, Z., et al.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res. 5(6), 623–628 (2017) CrossRef Hao, Z., et al.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res. 5(6), 623–628 (2017) CrossRef
4.
go back to reference Aulin, Y.V., Tuladhar, A., Borguet, E.: Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Opt. Lett. 43(18), 4402–4405 (2018) CrossRef Aulin, Y.V., Tuladhar, A., Borguet, E.: Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Opt. Lett. 43(18), 4402–4405 (2018) CrossRef
5.
go back to reference Wu, R., et al.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018) CrossRef Wu, R., et al.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018) CrossRef
6.
go back to reference Zhang, J., et al.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21(12), 14876–14887 (2013) CrossRef Zhang, J., et al.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21(12), 14876–14887 (2013) CrossRef
7.
go back to reference Sun, Y., et al.: Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. Opt. Express 23(5), 6370–6378 (2015) CrossRef Sun, Y., et al.: Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. Opt. Express 23(5), 6370–6378 (2015) CrossRef
8.
go back to reference Bin Hasan, S., et al.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1606–1611 (2012) CrossRef Bin Hasan, S., et al.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1606–1611 (2012) CrossRef
9.
go back to reference Huang, T., Tagne, P.M., Fu, S.: Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide. Opt. Express 24(9), 9706–9714 (2016) CrossRef Huang, T., Tagne, P.M., Fu, S.: Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide. Opt. Express 24(9), 9706–9714 (2016) CrossRef
10.
go back to reference Mayy, M., et al.: Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express 22(7), 7773–7782 (2014) CrossRef Mayy, M., et al.: Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express 22(7), 7773–7782 (2014) CrossRef
11.
go back to reference Takahashi, Y., et al.: A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498(7455), 470–474 (2013) CrossRef Takahashi, Y., et al.: A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498(7455), 470–474 (2013) CrossRef
12.
go back to reference Foster, M.A., et al.: Silicon-chip-based ultrafast optical oscilloscope. Nature 456(7218), 81–84 (2008) CrossRef Foster, M.A., et al.: Silicon-chip-based ultrafast optical oscilloscope. Nature 456(7218), 81–84 (2008) CrossRef
13.
go back to reference Arizmendi, L.: Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201(2), 253–283 (2004) CrossRef Arizmendi, L.: Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201(2), 253–283 (2004) CrossRef
14.
go back to reference Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006) Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006)
15.
go back to reference Luo, R., et al.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017) CrossRef Luo, R., et al.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017) CrossRef
16.
go back to reference Weng, W., Light, P.S., Luiten, A.N.: Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 43(7), 1415–1418 (2018) CrossRef Weng, W., Light, P.S., Luiten, A.N.: Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 43(7), 1415–1418 (2018) CrossRef
17.
go back to reference Wang, C., et al.: Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25(6), 6963–6973 (2017) CrossRef Wang, C., et al.: Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25(6), 6963–6973 (2017) CrossRef
18.
go back to reference Wang, C., et al.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 1–7 (2017) CrossRef Wang, C., et al.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 1–7 (2017) CrossRef
19.
go back to reference Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011) CrossRef Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011) CrossRef
20.
go back to reference Zhou, R., et al.: Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays. Opt. Express 25(25), 31478–31491 (2017) CrossRef Zhou, R., et al.: Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays. Opt. Express 25(25), 31478–31491 (2017) CrossRef
21.
go back to reference Luo, R., et al.: Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5(8), 1006–1011 (2018) CrossRef Luo, R., et al.: Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5(8), 1006–1011 (2018) CrossRef
22.
go back to reference de Oliveira, R.E., Lipson, M., de Matos, C.J.: Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In: Chen, S., Ji, Q.X., Gong, Q., Yi, X., Xiao, Y.F. (eds.) CLEO: Science and Innovations. Optical Society of America, Washington (2012) de Oliveira, R.E., Lipson, M., de Matos, C.J.: Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In: Chen, S., Ji, Q.X., Gong, Q., Yi, X., Xiao, Y.F. (eds.) CLEO: Science and Innovations. Optical Society of America, Washington (2012)
23.
go back to reference Xiao, F., et al.: Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express 23(3), 3236–3244 (2015) CrossRef Xiao, F., et al.: Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express 23(3), 3236–3244 (2015) CrossRef
24.
go back to reference Schiek, R., Pertsch, T.: Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt. Mater. Express 2(2), 126–139 (2012) CrossRef Schiek, R., Pertsch, T.: Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt. Mater. Express 2(2), 126–139 (2012) CrossRef
25.
go back to reference Klein, R., et al.: Absolute non-linear optical coefficients of LiNbO 3 for near stoichiometric crystal compositions. Opt. Mater. 22(2), 171–174 (2003) CrossRef Klein, R., et al.: Absolute non-linear optical coefficients of LiNbO 3 for near stoichiometric crystal compositions. Opt. Mater. 22(2), 171–174 (2003) CrossRef
26.
go back to reference Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002) CrossRef Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002) CrossRef
27.
go back to reference Sadaghiani, V.K., et al.: Design of graphene-based hybrid waveguides for nonlinear applications. Opt. Quant. Electron. 51(2), 49 (2019) CrossRef Sadaghiani, V.K., et al.: Design of graphene-based hybrid waveguides for nonlinear applications. Opt. Quant. Electron. 51(2), 49 (2019) CrossRef
Metadata
Title
Second harmonic generation in a graphene-based plasmonic waveguide
Authors
Vahid Khalili Sadaghiani
Mohammad Bagher Tavakoli
Ashkan Horri
Publication date
29-06-2021
Publisher
Springer US
Published in
Photonic Network Communications / Issue 2/2021
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00930-2