Skip to main content
Top

2021 | OriginalPaper | Chapter

Secure Collaborative Learning for Predictive Maintenance in Optical Networks

Authors : Khouloud Abdelli, Joo Yeon Cho, Stephan Pachnicke

Published in: Secure IT Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Building a reliable and accurate machine learning (ML) model is challenging in optical networks when training datasets are business-sensitive. We propose a framework of secure collaborative ML learning for predictive maintenance on cross-vendor datasets. Our framework is based on federated learning and multi-party computation technologies. Each vendor builds a local ML model based on its own private data. A server builds a global ML model by aggregating multiple local ML models in a private-preserving way. The server computes only the sum of the local models but cannot see any local model individually by the multi-party computation technique. The vendor-confidential dataset is never exposed to the server or other vendors. Moreover, after the global ML model is deployed in optical networks, the measured data compared to the prediction are privately distributed to the local model owners, which is beneficial to vendors. We applied our framework to the remaining useful life (RUL) prediction of laser device. Our experiments show that an accurate ML model can be built using sensitive datasets in a federated learning setting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdelli, K., Griesser, H., Pachnicke, S.: Machine learning based data driven diagnostic and prognostic approach for laser reliability enhancement, pp. 1–4 (2020) Abdelli, K., Griesser, H., Pachnicke, S.: Machine learning based data driven diagnostic and prognostic approach for laser reliability enhancement, pp. 1–4 (2020)
2.
go back to reference A hybrid CNN-LSTM approach for laser remaining useful life prediction (2021) A hybrid CNN-LSTM approach for laser remaining useful life prediction (2021)
3.
go back to reference Bell, J., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with (poly)logarithmic overhead, Cryptology ePrint Archive, Report 2020/704 (2020). https://ia.cr/2020/704 Bell, J., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with (poly)logarithmic overhead, Cryptology ePrint Archive, Report 2020/704 (2020). https://​ia.​cr/​2020/​704
4.
go back to reference Bonawitz, K.A., et al.: Practical secure aggregation for federated learning on user-held data. CoRR abs/1611.04482 (2016) Bonawitz, K.A., et al.: Practical secure aggregation for federated learning on user-held data. CoRR abs/1611.04482 (2016)
5.
go back to reference Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1175–1191 (2017) Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 1175–1191 (2017)
7.
go back to reference Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: 19th USENIX Security Symposium (USENIX Security 10) (Washington, DC), August 2010 Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: 19th USENIX Security Symposium (USENIX Security 10) (Washington, DC), August 2010
8.
go back to reference Celaya, J.R., Saxena, A., Saha, S., Goebel, K.F.: Prognostics of power mosfets under thermal stress accelerated aging using data-driven and model-based methodologies, September 2011 Celaya, J.R., Saxena, A., Saha, S., Goebel, K.F.: Prognostics of power mosfets under thermal stress accelerated aging using data-driven and model-based methodologies, September 2011
9.
go back to reference Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014) Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)
10.
go back to reference Corrigan-Gibbs, H., Boneh, D.: PRIO: private, robust, and scalable computation of aggregate statistics. In: Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI 2017, pp. 259–282 (2017) Corrigan-Gibbs, H., Boneh, D.: PRIO: private, robust, and scalable computation of aggregate statistics. In: Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation, NSDI 2017, pp. 259–282 (2017)
11.
go back to reference Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 1322–1333 (2015) Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 1322–1333 (2015)
13.
go back to reference Lie, D., Maniatis, P.: Glimmers: Resolving the privacy/trust quagmire. CoRR abs/1702.07436 (2017) Lie, D., Maniatis, P.: Glimmers: Resolving the privacy/trust quagmire. CoRR abs/1702.07436 (2017)
14.
go back to reference Liu, Z., Wang, Q., Song, C., Cheng, Y.: Similarity-based difference analysis approach for remaining useful life prediction of GAAS-based semiconductor lasers. IEEE Access 5, 21508–21523 (2017)CrossRef Liu, Z., Wang, Q., Song, C., Cheng, Y.: Similarity-based difference analysis approach for remaining useful life prediction of GAAS-based semiconductor lasers. IEEE Access 5, 21508–21523 (2017)CrossRef
15.
go back to reference Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data (2017) Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data (2017)
16.
go back to reference Mohr, M., Becker, C., Möller, R., Richter, M.: Towards collaborative predictive maintenance leveraging private cross-company data. In: Reussner, R.H., Koziolek, A., Heinrich, R. (eds.) INFORMATIK 2020, Gesellschaft für Informatik, Bonn, pp. 427–432 (2021) Mohr, M., Becker, C., Möller, R., Richter, M.: Towards collaborative predictive maintenance leveraging private cross-company data. In: Reussner, R.H., Koziolek, A., Heinrich, R. (eds.) INFORMATIK 2020, Gesellschaft für Informatik, Bonn, pp. 427–432 (2021)
17.
go back to reference Prakash, S., Hashemi, H., Wang, Y., Annavaram, M., Avestimehr, S.: Byzantine-resilient federated learning with heterogeneous data distribution (2021) Prakash, S., Hashemi, H., Wang, Y., Annavaram, M., Avestimehr, S.: Byzantine-resilient federated learning with heterogeneous data distribution (2021)
18.
go back to reference Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority, STOC 1989, pp. 73–85 (1989) Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority, STOC 1989, pp. 73–85 (1989)
19.
go back to reference Saxena, A., Goebel, K.: Phm08 challenge data set (2008) Saxena, A., Goebel, K.: Phm08 challenge data set (2008)
20.
go back to reference Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979) Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)
21.
go back to reference So, J., Ali, R.E., Guler, B., Jiao, J., Avestimehr, S.: Securing secure aggregation: Mitigating multi-round privacy leakage in federated learning. CoRR abs/2106.03328 (2021) So, J., Ali, R.E., Guler, B., Jiao, J., Avestimehr, S.: Securing secure aggregation: Mitigating multi-round privacy leakage in federated learning. CoRR abs/2106.03328 (2021)
22.
go back to reference van der Maaten, L., Hinton, G.: Viualizing data using t-sne 9, 2579–2605 (2008) van der Maaten, L., Hinton, G.: Viualizing data using t-sne 9, 2579–2605 (2008)
23.
go back to reference Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, vol. 1986, pp. 162–167. IEEE Computer Society (1986) Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, vol. 1986, pp. 162–167. IEEE Computer Society (1986)
Metadata
Title
Secure Collaborative Learning for Predictive Maintenance in Optical Networks
Authors
Khouloud Abdelli
Joo Yeon Cho
Stephan Pachnicke
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-91625-1_7

Premium Partner