Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-09-2020 | Original Article | Issue 17/2020

Environmental Earth Sciences 17/2020

Sediment record of mining legacy and water quality from a drinking-water reservoir, Aztec, New Mexico, USA

Journal:
Environmental Earth Sciences > Issue 17/2020
Authors:
Johanna M. Blake, Jeb E. Brown, Christina L. Ferguson, Rebecca J. Bixby, Naomi T. Delay
Important notes

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s12665-020-09126-9) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The record of mining legacy and water quality was investigated in sediments collected in 2018 from four trenches in the Aztec, New Mexico, drinking-water reservoir #1. Bulk chemical analysis of sediments with depth in the reservoir revealed variable trace-element (uranium, vanadium, arsenic, copper, sulfur, silver, lead, and zinc) concentrations, which appear to coincide with historical mining and milling operations. Cesium-137 age dating, which identified the location of the 1963 radioactive fallout maximum, combined with the known age of the bottom and top of the sediment trenches, was used to estimate a polynomial sedimentation rate (average rate = 1.7 cm/yr). The clay size fraction (< 0.004 mm) was the dominant grain-size fraction of the sediments. Abundant fine-grained phyllosilicate (clay) minerals, predominantly montmorillonite and kaolinite, may explain sorption properties of trace elements. Scanning electron microscopy evaluation of sediments from two trenches showed copper and zinc associated with sulfur, and arsenic associated with iron and aluminum oxides. Results from laboratory batch experiments indicated that uranium, vanadium, and arsenic were released when sediments were reacted with a 150 mg/L sodium bicarbonate solution whereas copper was released when sediments were reacted with 2 mMol/L acetic acid. Observed concentrations from the two leach tests were below regulatory thresholds for delivery of solids to a landfill and were below drinking-water standards. Diatom relative abundance indicates that the water quality in the reservoir was not impaired by high metal concentrations.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 17/2020

Environmental Earth Sciences 17/2020 Go to the issue