Skip to main content
Top

2014 | OriginalPaper | Chapter

6. Sediment Transport, River Morphology, and River Engineering

Author : Chih Ted Yang, Ph.D., P.E., D. W.R.E.

Published in: Modern Water Resources Engineering

Publisher: Humana Press

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Unit stream power is the most important and dominant parameter for the determination of transport rate of sand, gravel, and hyper-concentrated sediment with wash load. The unit stream power theory can also be applied to the study of surface erosion. The unit stream power theory can be derived from the basic theories in turbulence and fluid mechanics. Minimum energy dissipation rate theory, or its simplified minimum unit stream power and minimum stream power theories, can be derived from the basic thermodynamic law based on the analogy between a thermo system and a river system. It can also be derived directly from mathematical argument for a dissipative system under dynamic equilibrium condition. The minimum energy dissipation rate theory and its simplified theories of minimum unit stream power and minimum stream power can provide engineers the needed theoretical basis for river morphology and hydraulic engineering studies. The Generalized Sediment Transport model for Alluvial River Simulation computer model series have been developed based on the above theories. The computer model series have been successfully applied in many countries for solving hydraulic engineering and reservoir sedimentation problems. Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology, river engineering, and reservoir sedimentation problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang CT (1972) Unit stream power and sediment transport. ASCE J Hydraul Div 98(No. HY10):1805–1826 Yang CT (1972) Unit stream power and sediment transport. ASCE J Hydraul Div 98(No. HY10):1805–1826
2.
go back to reference Yang CT (1973) Incipient motion and sediment transport. ASCE J Hydraul Div 99(No. HY10):1679–1704 Yang CT (1973) Incipient motion and sediment transport. ASCE J Hydraul Div 99(No. HY10):1679–1704
3.
go back to reference Yang CT (1979) Unit stream power equations for total load. J Hydrol 40:123–138CrossRef Yang CT (1979) Unit stream power equations for total load. J Hydrol 40:123–138CrossRef
4.
go back to reference Yang CT (1984) Unit stream power equation for gravel. ASCE J Hydraul Eng 110(No. HY12):1783–1797CrossRef Yang CT (1984) Unit stream power equation for gravel. ASCE J Hydraul Eng 110(No. HY12):1783–1797CrossRef
5.
go back to reference Yang CT (1996) Sediment transport theory and practice. McGraw-Hill, New York, NY Yang CT (1996) Sediment transport theory and practice. McGraw-Hill, New York, NY
6.
go back to reference Yang CT (2003) Sediment transport theory and practice. Krieger Publishing Company, Malabar, FL Yang CT (2003) Sediment transport theory and practice. Krieger Publishing Company, Malabar, FL
7.
go back to reference Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from experiments, 1956–1961. U.S. Geological Survey Professional Paper 462—J Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from experiments, 1956–1961. U.S. Geological Survey Professional Paper 462—J
8.
go back to reference Stein RA (1965) Laboratory studies of total load and apparent bed-load. J Geophys Res 70(8):1831–1842CrossRef Stein RA (1965) Laboratory studies of total load and apparent bed-load. J Geophys Res 70(8):1831–1842CrossRef
9.
go back to reference Vanoni VA (1978) Predicting sediment discharge in alluvial channels, water supply and management. Pergamon, Oxford, pp 399–417 Vanoni VA (1978) Predicting sediment discharge in alluvial channels, water supply and management. Pergamon, Oxford, pp 399–417
10.
go back to reference Yang CT, Kong X (1991) Energy dissipation rate and sediment transport. J Hydraul Res 29(4):457–474CrossRef Yang CT, Kong X (1991) Energy dissipation rate and sediment transport. J Hydraul Res 29(4):457–474CrossRef
11.
go back to reference Yang CT, Molinas A (1982) Sediment transport and unit stream power function. ASCE J Hydraul Div 108(No. HY6):776–793 Yang CT, Molinas A (1982) Sediment transport and unit stream power function. ASCE J Hydraul Div 108(No. HY6):776–793
12.
go back to reference Bagnold RA (1966) An approach to sediment transport problem from general physics, U.S. Geological survey Professional Paper 422—J Bagnold RA (1966) An approach to sediment transport problem from general physics, U.S. Geological survey Professional Paper 422—J
13.
go back to reference Yang CT (1985) Mechanics of suspended sediment transport. In: Bechteler W (ed) Proceedings of Euromech 192: Transport of suspended solids in open channels. Institute of Hydromechanics, University of the Armed Forces, Munich/Neubiberg, Germany, pp 87–91 Yang CT (1985) Mechanics of suspended sediment transport. In: Bechteler W (ed) Proceedings of Euromech 192: Transport of suspended solids in open channels. Institute of Hydromechanics, University of the Armed Forces, Munich/Neubiberg, Germany, pp 87–91
14.
go back to reference Yang CT, Wan S (1991) Comparisons of selected bed-material load formulas. ASCE J Hydraul Eng 117(8):973–989CrossRef Yang CT, Wan S (1991) Comparisons of selected bed-material load formulas. ASCE J Hydraul Eng 117(8):973–989CrossRef
15.
go back to reference Yang CT, Marsooli R, Aalami MT (2009) Evaluation of total load sediment transport formulas using ANN. Int J Sediment Res 24(3):274–286CrossRef Yang CT, Marsooli R, Aalami MT (2009) Evaluation of total load sediment transport formulas using ANN. Int J Sediment Res 24(3):274–286CrossRef
16.
go back to reference Alonso CV (1980) Selecting a formula to estimate sediment transport capacity in nonvegetated channels, CREAMS (A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management System), Knisel WG (ed) U.S. Department of Agriculture Conservation Research Report No. 26, Chapter 5, pp 426–439 Alonso CV (1980) Selecting a formula to estimate sediment transport capacity in nonvegetated channels, CREAMS (A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management System), Knisel WG (ed) U.S. Department of Agriculture Conservation Research Report No. 26, Chapter 5, pp 426–439
17.
go back to reference ASCE Task Committee on Relations between Morphology of Small Streams and Sediment Yield of the Committee on Sedimentation of the Hydraulics Division (1982) Relationships between morphology of small stream and sediment yield. ASCE J Hydraul Div 108(No. NY11):1328–1365 ASCE Task Committee on Relations between Morphology of Small Streams and Sediment Yield of the Committee on Sedimentation of the Hydraulics Division (1982) Relationships between morphology of small stream and sediment yield. ASCE J Hydraul Div 108(No. NY11):1328–1365
18.
go back to reference Mengis RC (1981) Modeling of a transient streambed in the Rio Grande, Cochiti Dam to near Albuquerque, New Mexico, U.S. Geological Survey Open File Report 82–106, Denver, Colorado Mengis RC (1981) Modeling of a transient streambed in the Rio Grande, Cochiti Dam to near Albuquerque, New Mexico, U.S. Geological Survey Open File Report 82–106, Denver, Colorado
19.
go back to reference German Association for Water Resources and Land Improvement (DVWK) (1990) Sediment Transport in Open Channels—Calculation Procedures for Engineering Practice, Bulletin No. 17, Verlag, Paul Parey, Hamburg/Berlin German Association for Water Resources and Land Improvement (DVWK) (1990) Sediment Transport in Open Channels—Calculation Procedures for Engineering Practice, Bulletin No. 17, Verlag, Paul Parey, Hamburg/Berlin
20.
go back to reference Yang CT (1980) Sediment transport and river engineering. Proceedings of the International Symposium on River Sedimentation, Vol. 1, pp 350–386, Beijing, China Yang CT (1980) Sediment transport and river engineering. Proceedings of the International Symposium on River Sedimentation, Vol. 1, pp 350–386, Beijing, China
21.
go back to reference Yang CT (1977) The movement of sediment in rivers, Geophysical Survey 3. D. Reidel, Dordrecht, pp 39–68 Yang CT (1977) The movement of sediment in rivers, Geophysical Survey 3. D. Reidel, Dordrecht, pp 39–68
22.
go back to reference Yang CT, Molinas A, Wu B (1996) Sediment transport in the Yellow River. ASCE J Hydraul Eng 122(5):237–244CrossRef Yang CT, Molinas A, Wu B (1996) Sediment transport in the Yellow River. ASCE J Hydraul Eng 122(5):237–244CrossRef
23.
go back to reference Shih H-M, Yang CT (2009) Estimating overland flow erosion capacity using unit stream power. Int J Sediment Res 24(1):46–62CrossRef Shih H-M, Yang CT (2009) Estimating overland flow erosion capacity using unit stream power. Int J Sediment Res 24(1):46–62CrossRef
24.
go back to reference Gilbert KG (1914) The transportation of debris by running water, U.S. Geological Survey Professional Paper 86, p 263 Gilbert KG (1914) The transportation of debris by running water, U.S. Geological Survey Professional Paper 86, p 263
25.
go back to reference Guy BT, Dickinson WT (1990) Inception of sediment transport in shallow overland flow. In: Bryan RB (ed) Soil erosion-experiment and models. Springer-Verlag, Cremlingen, pp 91–109, Catena Supplement 17 Guy BT, Dickinson WT (1990) Inception of sediment transport in shallow overland flow. In: Bryan RB (ed) Soil erosion-experiment and models. Springer-Verlag, Cremlingen, pp 91–109, Catena Supplement 17
26.
go back to reference Julien PY, Simons DB (1985) Sediment transport capacity of overland flow. Am Soc Agric Eng 28(3):755–762 Julien PY, Simons DB (1985) Sediment transport capacity of overland flow. Am Soc Agric Eng 28(3):755–762
27.
go back to reference Prigogine I (1967) Introduction to thermodynamics of irreversible processes, 3rd edn. Wiley, New York, NY Prigogine I (1967) Introduction to thermodynamics of irreversible processes, 3rd edn. Wiley, New York, NY
28.
go back to reference Yang CT (1971) Potential energy and stream morphology, American Geophysical Union. Water Resour Res 7(2):311–322CrossRef Yang CT (1971) Potential energy and stream morphology, American Geophysical Union. Water Resour Res 7(2):311–322CrossRef
29.
go back to reference Yang CT, Song CCS (1986) Theory of minimum energy and energy dissipation rate, Encyclopedia of Fluid Mechanics Vol. 1, Cheremisinoff (ed), Gulf publishing company book division, Chapter 11, Houston, London, Paris, Tokyo: 353–399 Yang CT, Song CCS (1986) Theory of minimum energy and energy dissipation rate, Encyclopedia of Fluid Mechanics Vol. 1, Cheremisinoff (ed), Gulf publishing company book division, Chapter 11, Houston, London, Paris, Tokyo: 353–399
30.
go back to reference Yang CT (1987) Energy dissipation rate approach in river mechanics. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment transport in gravel-bed rivers. Wiley, New York, pp 753–766 Yang CT (1987) Energy dissipation rate approach in river mechanics. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment transport in gravel-bed rivers. Wiley, New York, pp 753–766
32.
go back to reference Yang CT (1971) Formation of riffles and pools. Am Geophys Union Water Resour Res 7(6):1567–1573 Yang CT (1971) Formation of riffles and pools. Am Geophys Union Water Resour Res 7(6):1567–1573
33.
go back to reference Molinas A, Yang CT (1986) Computer program User’s manual for GSTARS (generalized stream tube model for alluvial river simulation). U.S. Bureau of Reclamation Engineering and Research Center, Denver, CO Molinas A, Yang CT (1986) Computer program User’s manual for GSTARS (generalized stream tube model for alluvial river simulation). U.S. Bureau of Reclamation Engineering and Research Center, Denver, CO
34.
go back to reference Yang CT, Treviño MA, Simões FJM (1998) Program User’s manual for GSRARS 2.0 (Generalized stream tube model for alluvial river simulation version 2.0). U.S. Bureau of Reclamation Technical Service Center, Denver, CO Yang CT, Treviño MA, Simões FJM (1998) Program User’s manual for GSRARS 2.0 (Generalized stream tube model for alluvial river simulation version 2.0). U.S. Bureau of Reclamation Technical Service Center, Denver, CO
35.
go back to reference Yang CT, Simões FJM (2000) User’s Manual for GSTARS 2.1 (Generalized sediment transport model for alluvial river simulation version 2.1). U.S. Bureau of Reclamation Technical Service Center, Denver, CO Yang CT, Simões FJM (2000) User’s Manual for GSTARS 2.1 (Generalized sediment transport model for alluvial river simulation version 2.1). U.S. Bureau of Reclamation Technical Service Center, Denver, CO
36.
go back to reference Yang CT, Simões FJM (2002) User’s Manual for GSTARS3 (generalized sediment transport model for alluvial river simulation version 3.0). U.S. Bureau of Reclamation Technical Service Center, Denver, CO Yang CT, Simões FJM (2002) User’s Manual for GSTARS3 (generalized sediment transport model for alluvial river simulation version 3.0). U.S. Bureau of Reclamation Technical Service Center, Denver, CO
37.
go back to reference Yang CT, Ahn J (2011) User’s Manual for GSTARS4 (generalized sediment transport model for alluvial river simulation version 4.0). Colorado State University Hydroscience and Training Center, Fort Collins, CO Yang CT, Ahn J (2011) User’s Manual for GSTARS4 (generalized sediment transport model for alluvial river simulation version 4.0). Colorado State University Hydroscience and Training Center, Fort Collins, CO
38.
go back to reference Yang CT, Simõs FJM (2008) GSTARS computer models and their applications, part I: theoretical development. Int J Sediment Res 23(3):197–211CrossRef Yang CT, Simõs FJM (2008) GSTARS computer models and their applications, part I: theoretical development. Int J Sediment Res 23(3):197–211CrossRef
39.
go back to reference Simões FJM, Yang CT (2008) GSTARS computer models and their applications, part II: applications. Int J Sediment Res 23(4):299–315CrossRef Simões FJM, Yang CT (2008) GSTARS computer models and their applications, part II: applications. Int J Sediment Res 23(4):299–315CrossRef
40.
go back to reference Friedkin JF (1945) A laboratory study of the meandering of alluvial river, plate 9, waterways experiment station. U.S. Army Corps of Engineers, Vicksburg, MS Friedkin JF (1945) A laboratory study of the meandering of alluvial river, plate 9, waterways experiment station. U.S. Army Corps of Engineers, Vicksburg, MS
41.
go back to reference Leoplod LB, Wolman MG (1957) River patterns: braided, meandering, and straight. U.S. Geological Survey Professional Paper 282—B Leoplod LB, Wolman MG (1957) River patterns: braided, meandering, and straight. U.S. Geological Survey Professional Paper 282—B
42.
go back to reference Yang CT (1986) Dynamic adjustment of rivers. Proceedings of the 3rd International Symposium on River Sedimentation, Jackson, MS, pp 118–132 Yang CT (1986) Dynamic adjustment of rivers. Proceedings of the 3rd International Symposium on River Sedimentation, Jackson, MS, pp 118–132
43.
go back to reference Yang CT, Molinas A, Song CCS (1988) GSTARS—Generalized Stream Tube model for Alluvial River Simulation, Twelve Selected Computer Stream Sedimentation Models Developed in the United States, Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data, Interagency Ad Hoc Sedimentation Work Group, (Fan SS ed), Federal Energy Regulatory Commission. Washington, DC, USA Yang CT, Molinas A, Song CCS (1988) GSTARS—Generalized Stream Tube model for Alluvial River Simulation, Twelve Selected Computer Stream Sedimentation Models Developed in the United States, Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data, Interagency Ad Hoc Sedimentation Work Group, (Fan SS ed), Federal Energy Regulatory Commission. Washington, DC, USA
44.
go back to reference Song CCS, Zheng Y, Yang CT (1995) Modeling of river morphologic changes. Int J Sediment Res 10(2):1–20 Song CCS, Zheng Y, Yang CT (1995) Modeling of river morphologic changes. Int J Sediment Res 10(2):1–20
45.
go back to reference Han Q (1980) A study on non-equilibrium transportation of suspended load. In: Proceedings of the International Symposium on River Sedimentation, Beijing, China, pp 793–802 (in Chinese) Han Q (1980) A study on non-equilibrium transportation of suspended load. In: Proceedings of the International Symposium on River Sedimentation, Beijing, China, pp 793–802 (in Chinese)
46.
go back to reference Othman KI, Wang D (2004) Application of GSTARS 2.1 model for degradation in alluvial channels. In: Proceedings of the Ninth International Symposium on River Sedimentation, Yichang, China, Vol. III, 1532–1537 Othman KI, Wang D (2004) Application of GSTARS 2.1 model for degradation in alluvial channels. In: Proceedings of the Ninth International Symposium on River Sedimentation, Yichang, China, Vol. III, 1532–1537
47.
go back to reference Cellino M, Essyad K (2002) Reduction of sediment deposition by introducing an artificial stony bank. A practical example in Upper Rhone River, Switzerland. In: Bousmar D, Zech Y (eds) Proceedings of the international conference on Fluvial Hydraulics, Louvain-La-Neuve, Belgium, River Flow 2002. A. A. Balkema Publishers, Lisse/Abingdon/Exton (PA)/Tokyo, pp 951–959 Cellino M, Essyad K (2002) Reduction of sediment deposition by introducing an artificial stony bank. A practical example in Upper Rhone River, Switzerland. In: Bousmar D, Zech Y (eds) Proceedings of the international conference on Fluvial Hydraulics, Louvain-La-Neuve, Belgium, River Flow 2002. A. A. Balkema Publishers, Lisse/Abingdon/Exton (PA)/Tokyo, pp 951–959
48.
go back to reference Banchuen S, Tingsanchali T, Chinnarasri C (2008) Comparison between GSTARS 2.1 and HTC-6 river morphological models. IAHR Int J Hydrol Sci Banchuen S, Tingsanchali T, Chinnarasri C (2008) Comparison between GSTARS 2.1 and HTC-6 river morphological models. IAHR Int J Hydrol Sci
49.
go back to reference Laursen EM (1958) The total sediment load of streams. ASCE J Hydraul Div 84(No. HY1):1530-1–1530-36 Laursen EM (1958) The total sediment load of streams. ASCE J Hydraul Div 84(No. HY1):1530-1–1530-36
50.
go back to reference Ashida K, Michiue M (1971) An investigation of river bed degradation downstream of a dam. Proceedings of the IAHR XIV Congress, 3 Ashida K, Michiue M (1971) An investigation of river bed degradation downstream of a dam. Proceedings of the IAHR XIV Congress, 3
51.
go back to reference Swanee PK (1974) Analytic and experimental investigation of streambed variation of a dam, Ph.D. thesis, Department of Civil Engineering, University of Roorkee, India Swanee PK (1974) Analytic and experimental investigation of streambed variation of a dam, Ph.D. thesis, Department of Civil Engineering, University of Roorkee, India
Metadata
Title
Sediment Transport, River Morphology, and River Engineering
Author
Chih Ted Yang, Ph.D., P.E., D. W.R.E.
Copyright Year
2014
Publisher
Humana Press
DOI
https://doi.org/10.1007/978-1-62703-595-8_6