Skip to main content
Top

2024 | OriginalPaper | Chapter

Segmentation Method for Bending Tools – Fundamental Investigation of Profile Forming by Segmented Tools

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In bending processes with generic tools (e.g., three-roll push bending), the part geometry is a result of the free tool kinematics. In contrast, processes with geometry-specific tools (e.g., rotary draw bending) require a specialized tool geometry to form a dedicated part geometry. To make them more flexible while maintaining their advantages of dimensional accuracy and process controllability, adjustable tools are needed. Inspired by multi forming techniques, one possible approach is to segment the conventionally closed tool surfaces and adjust them in-process. For the design of the segmentation in terms of segment geometry and size, as well as in terms of tolerable spaces, a deep understanding of the deformation mechanisms of the workpiece in contact with segmented surfaces is crucial. As a first step toward this goal, this work presents lateral indentation tests of circular and square steel and aluminum tubes by segments and segmented surfaces. Based on these tests, finite element (FE) models are validated and show a good correlation with the experimental tests in terms of force-displacement curves and part geometries. Finally, the FE-model is used to perform a parameter study to investigate the deformation behavior of tubes subjected to lateral loading by segmented surfaces in dependency of different tube wall thicknesses as well as of different segment spacings. It is outlined, that the segmentation of forming tools is generally possible with negligible impact on the process when choosing a suitable surface topology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang, D.Y., et al.: Flexibility in metal forming. CIRP Ann. 67, 743–765 (2018)CrossRef Yang, D.Y., et al.: Flexibility in metal forming. CIRP Ann. 67, 743–765 (2018)CrossRef
3.
go back to reference Ghiotti, A., Simonetto, E., Bruschi, S., Bariani, P.F.: Springback measurement in three roll push bending process of hollow structural sections. CIRP Ann. 66, 289–292 (2017)CrossRef Ghiotti, A., Simonetto, E., Bruschi, S., Bariani, P.F.: Springback measurement in three roll push bending process of hollow structural sections. CIRP Ann. 66, 289–292 (2017)CrossRef
6.
go back to reference Heftrich, C., Steinheimer, R., Engel, B.: Rotary-draw-bending using tools with reduced geometries. Procedia Manuf. 15, 804–811 (2018)CrossRef Heftrich, C., Steinheimer, R., Engel, B.: Rotary-draw-bending using tools with reduced geometries. Procedia Manuf. 15, 804–811 (2018)CrossRef
7.
go back to reference Olsen, B.A.: Die Forming of Sheet Metal using Discrete Surfaces. Massachusetts Institute of Technology (1980) Olsen, B.A.: Die Forming of Sheet Metal using Discrete Surfaces. Massachusetts Institute of Technology (1980)
8.
go back to reference Hardt, D.E., Webb, R.D., Suh, N.P.: Sheet metal die forming using closed-loop shape control. CIRP Ann. 31, 165–169 (1982)CrossRef Hardt, D.E., Webb, R.D., Suh, N.P.: Sheet metal die forming using closed-loop shape control. CIRP Ann. 31, 165–169 (1982)CrossRef
9.
go back to reference Walczyk, D.F., Lakshmikanthan, J., Kirk, D.R.: Development of a reconfigurable tool for forming aircraft body panels. J. Manuf. Syst. 17, 287–296 (1998)CrossRef Walczyk, D.F., Lakshmikanthan, J., Kirk, D.R.: Development of a reconfigurable tool for forming aircraft body panels. J. Manuf. Syst. 17, 287–296 (1998)CrossRef
10.
go back to reference Walczyk, D.F., Hardt, D.E.: Design and analysis of reconfigurable discrete dies for sheet metal forming. J. Manuf. Syst. 17, 436–454 (1998)CrossRef Walczyk, D.F., Hardt, D.E.: Design and analysis of reconfigurable discrete dies for sheet metal forming. J. Manuf. Syst. 17, 436–454 (1998)CrossRef
11.
go back to reference Li, M.Z., Cai, Z.Y., Sui, Z., Yan, Q.G.: Multi-point forming technology for sheet metal. J. Mater. Process. Technol. 129, 333–338 (2002)CrossRef Li, M.Z., Cai, Z.Y., Sui, Z., Yan, Q.G.: Multi-point forming technology for sheet metal. J. Mater. Process. Technol. 129, 333–338 (2002)CrossRef
12.
go back to reference Li, M.-Z., Cai, Z.-Y., Liu, C.-G.: Flexible manufacturing of sheet metal parts based on digitized-die. Robot. Comput. Integr. Manuf. 23, 107–115 (2007)CrossRef Li, M.-Z., Cai, Z.-Y., Liu, C.-G.: Flexible manufacturing of sheet metal parts based on digitized-die. Robot. Comput. Integr. Manuf. 23, 107–115 (2007)CrossRef
13.
go back to reference Cai, Z.-Y., Wang, S.-H., Li, M.-Z.: Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback. Int. J. Adv. Manuf. Technol. 37, 927–936 (2008)CrossRef Cai, Z.-Y., Wang, S.-H., Li, M.-Z.: Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and springback. Int. J. Adv. Manuf. Technol. 37, 927–936 (2008)CrossRef
15.
go back to reference Elghawail, A.M., et al.: Measurement of forces on multi-point forming tools using fibre Bragg grating sensors. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 234, 453–462 (2020)CrossRef Elghawail, A.M., et al.: Measurement of forces on multi-point forming tools using fibre Bragg grating sensors. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 234, 453–462 (2020)CrossRef
17.
go back to reference Wang, S., Cai, Z., Li, M.: Numerical investigation of the influence of punch element in multi-point stretch forming process. Int. J. Adv. Manuf. Technol. 49, 475–483 (2010)CrossRef Wang, S., Cai, Z., Li, M.: Numerical investigation of the influence of punch element in multi-point stretch forming process. Int. J. Adv. Manuf. Technol. 49, 475–483 (2010)CrossRef
18.
go back to reference Paunoiu, V., Cekan, P., Gavan, E., Nicoara, D.: Numerical simulations in reconfigurable multipoint forming. Int. J. Mater Form 1, 181–184 (2008)CrossRef Paunoiu, V., Cekan, P., Gavan, E., Nicoara, D.: Numerical simulations in reconfigurable multipoint forming. Int. J. Mater Form 1, 181–184 (2008)CrossRef
19.
go back to reference Lin, X., et al.: Effect of flexible 3D multipoint stretch bending dies on the shape accuracy and the optimal design. Adv. Mater. Sci. Eng. 2018, e1095398 (2018)CrossRef Lin, X., et al.: Effect of flexible 3D multipoint stretch bending dies on the shape accuracy and the optimal design. Adv. Mater. Sci. Eng. 2018, e1095398 (2018)CrossRef
20.
go back to reference Liang, J., Liao, Y., Li, Y., Liang, C.: Study on the influence of bending angle of multipoint stretch-bending of profiles on section distortion of parts. Math. Probl. Eng. 2020, e1975805 (2020)CrossRef Liang, J., Liao, Y., Li, Y., Liang, C.: Study on the influence of bending angle of multipoint stretch-bending of profiles on section distortion of parts. Math. Probl. Eng. 2020, e1975805 (2020)CrossRef
21.
go back to reference Liu, X.Z., Liu, C.G., Yao, Y., Zhang, X.G.: Numerical analysis for multi-point forming of aluminum alloy profile. Adv. Mater. Res. 1035, 128–133 (2014)CrossRef Liu, X.Z., Liu, C.G., Yao, Y., Zhang, X.G.: Numerical analysis for multi-point forming of aluminum alloy profile. Adv. Mater. Res. 1035, 128–133 (2014)CrossRef
22.
go back to reference Thomas, S.G., Reid, S.R., Johnson, W.: Large deformations of thin-walled circular tubes under transverse loading – I. An experimental survey of the bending of simply supported tubes under a central load. Int. J. Mech. Sci. 18, 325–333 (1976)CrossRef Thomas, S.G., Reid, S.R., Johnson, W.: Large deformations of thin-walled circular tubes under transverse loading – I. An experimental survey of the bending of simply supported tubes under a central load. Int. J. Mech. Sci. 18, 325–333 (1976)CrossRef
23.
go back to reference Watson, A.R., Reid, S.R., Johnson, W., Thomas, S.G.: Large deformations of thin-walled circular tubes under transverse loading – II. Experimental study of the crushing of circular tubes by centrally applied opposed wedge-shaped indenters. Int. J. Mech. Sci. 18, 387–397 (1976)CrossRef Watson, A.R., Reid, S.R., Johnson, W., Thomas, S.G.: Large deformations of thin-walled circular tubes under transverse loading – II. Experimental study of the crushing of circular tubes by centrally applied opposed wedge-shaped indenters. Int. J. Mech. Sci. 18, 387–397 (1976)CrossRef
24.
go back to reference Watson, A.R., Reid, S.R., Johnson, W.: Large deformations of thin-walled circular tubes under transverse loading – III. Further experiments on the bending of simply supported tubes. Int. J. Mech. Sci. 18, 501–502 (1976)CrossRef Watson, A.R., Reid, S.R., Johnson, W.: Large deformations of thin-walled circular tubes under transverse loading – III. Further experiments on the bending of simply supported tubes. Int. J. Mech. Sci. 18, 501–502 (1976)CrossRef
25.
go back to reference Wierzbicki, T., Suh, M.S.: Indentation of tubes under combined loading. Int. J. Mech. Sci. 30, 229–248 (1988)CrossRef Wierzbicki, T., Suh, M.S.: Indentation of tubes under combined loading. Int. J. Mech. Sci. 30, 229–248 (1988)CrossRef
26.
go back to reference Karamanos, S.A., Andreadakis, K.P.: Denting of internally pressurized tubes under lateral loads. Int. J. Mech. Sci. 48, 1080–1094 (2006)CrossRef Karamanos, S.A., Andreadakis, K.P.: Denting of internally pressurized tubes under lateral loads. Int. J. Mech. Sci. 48, 1080–1094 (2006)CrossRef
27.
go back to reference Arabzadeh, H., Zeinoddini, M.: A closed-form solution for lateral indentation of pressurized pipes resting on a flexible bed. Int. J. Mech. Sci. 75, 189–199 (2013)CrossRef Arabzadeh, H., Zeinoddini, M.: A closed-form solution for lateral indentation of pressurized pipes resting on a flexible bed. Int. J. Mech. Sci. 75, 189–199 (2013)CrossRef
28.
go back to reference Zeinoddini, M., Arabzadeh, H., Ezzati, M., Parke, G.A.R.: Response of submarine pipelines to impacts from dropped objects: bed flexibility effects. Int. J. Impact Eng. 62, 129–141 (2013)CrossRef Zeinoddini, M., Arabzadeh, H., Ezzati, M., Parke, G.A.R.: Response of submarine pipelines to impacts from dropped objects: bed flexibility effects. Int. J. Impact Eng. 62, 129–141 (2013)CrossRef
29.
go back to reference Brooker, D.C.: A numerical study on the lateral indentation of continuously supported tubes. J. Constr. Steel Res. 60, 1177–1192 (2004)CrossRef Brooker, D.C.: A numerical study on the lateral indentation of continuously supported tubes. J. Constr. Steel Res. 60, 1177–1192 (2004)CrossRef
30.
go back to reference Liu, J.H., Francis, A.: Theoretical analysis of local indentation on pressured pipes. Int. J. Press. Vessels Pip. 81, 931–939 (2004)CrossRef Liu, J.H., Francis, A.: Theoretical analysis of local indentation on pressured pipes. Int. J. Press. Vessels Pip. 81, 931–939 (2004)CrossRef
31.
go back to reference Grzancic, G., Löbbe, C., Ben Khalifa, N., Tekkaya, A.E.: Analytical prediction of wall thickness reduction and forming forces during the radial indentation process in incremental profile forming. J. Mater. Process. Technol. 267, 68–79 (2019)CrossRef Grzancic, G., Löbbe, C., Ben Khalifa, N., Tekkaya, A.E.: Analytical prediction of wall thickness reduction and forming forces during the radial indentation process in incremental profile forming. J. Mater. Process. Technol. 267, 68–79 (2019)CrossRef
32.
go back to reference El-Magd, E., Treppman, C., Korthäuer, M.: Description of flow curves over wide ranges of strain rate and temperature. Int. J. Mater. Res. 97, 1453–1459 (2006)CrossRef El-Magd, E., Treppman, C., Korthäuer, M.: Description of flow curves over wide ranges of strain rate and temperature. Int. J. Mater. Res. 97, 1453–1459 (2006)CrossRef
34.
go back to reference Voce, E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 74, 537–562 (1948) Voce, E.: The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 74, 537–562 (1948)
Metadata
Title
Segmentation Method for Bending Tools – Fundamental Investigation of Profile Forming by Segmented Tools
Authors
Jonas Reuter
Peter Frohn-Sörensen
Bernd Engel
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-41023-9_55

Premium Partners