Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-04-2020 | Original Article | Issue 6/2020

International Journal of Computer Assisted Radiology and Surgery 6/2020

Segmentation of cervical intervertebral disks in videofluorography by CNN, multi-channelization and feature selection

Journal:
International Journal of Computer Assisted Radiology and Surgery > Issue 6/2020
Authors:
Ayano Fujinaka, Kojiro Mekata, Hotaka Takizawa, Hiroyuki Kudo
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

Dysphagia has a large impact on the society because it is a risk factor of malnutrition and aspiration pneumonia, and therefore, it is necessary to elucidate the entire mechanism of dysphagia. In this study, we propose a segmentation method of cervical intervertebral disks (CIDs) in videofluorography (VF) by use of patch-based convolutional neural network (CNN), our multi-channelization (MC) method and image feature selection.

Methods

Twenty image filters are individually applied to a VF frame image to generate feature images. One color image, called a multi-channelized image, is generated by setting three selected feature images to its red, green and blue channels. Patch-based CNN is applied to the MC image, and the segmentation accuracy of CIDs is evaluated by the pixel-based F-measure. The combination of the three feature images is optimized by the simulated annealing method.

Results

The proposed method was applied to actual VF dataset consisting of 19 patients and 39 healthy participants. The segmentation accuracy was 59.3% in the F-measure when Sobel and morphological top-hat filters were selected in MC, whereas it was 56.2% when original frame images were used.

Conclusion

The experimental results demonstrated that the proposed method was able to segment CIDs from actual VF and also that the MC method was able to increase the segmentation accuracy by approximately 3%. In this study, LeNet was used as CNN. One of our future tasks is to use other CNNs.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Computer Assisted Radiology and Surgery 6/2020 Go to the issue

Premium Partner

    Image Credits