Skip to main content
Top
Published in: Environmental Earth Sciences 5/2017

01-03-2017 | Original Article

Seismic liquefaction potential assessed by neural networks

Authors: Xinhua Xue, Enlong Liu

Published in: Environmental Earth Sciences | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study presents two optimization techniques: genetic algorithm (GA) and particle swarm optimization (PSO), to improve the efficiency of backpropagation (BP) neural network model for predicting liquefaction susceptibility of soil. A detailed parametric study is designed and performed to find the optimal parameters of GA and PSO, respectively. The database used in this study includes 166 CPT-based field observations from more than eight major earthquakes between 1964 and 1983. Six factors including cone resistance, total vertical stress, effective vertical stress, depth of penetration, normalized peak horizontal acceleration at ground surface and earthquake magnitude are selected as the evaluating indices. The predictions from the PSO–BP model were compared with those from two models: BP and GA–BP. The study concluded that the proposed PSO–BP model improves the classification accuracy and is a feasible method in predicting soil liquefaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82CrossRef Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82CrossRef
go back to reference Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217:96–107CrossRef Banerjee TP, Das S (2012) Multi-sensor data fusion using support vector machine for motor fault detection. Inf Sci 217:96–107CrossRef
go back to reference Belkhatir M, Schanz T, Arab A, Della N, Kadri A (2014) Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech Test J 37(5):922–931CrossRef Belkhatir M, Schanz T, Arab A, Della N, Kadri A (2014) Insight into the effects of gradation on the pore pressure generation of sand–silt mixtures. Geotech Test J 37(5):922–931CrossRef
go back to reference Cabalar AF, Cevik A (2009) Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput Geosci 35(9):1884–1896CrossRef Cabalar AF, Cevik A (2009) Genetic programming-based attenuation relationship: an application of recent earthquakes in turkey. Comput Geosci 35(9):1884–1896CrossRef
go back to reference Cabalar AF, Cevik A (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(8):10358–10367CrossRef Cabalar AF, Cevik A (2011) Triaxial behavior of sand–mica mixtures using genetic programming. Expert Syst Appl 38(8):10358–10367CrossRef
go back to reference Cabalar AF, Cevik A, Guzelbey IH (2010) Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Comput Appl 19(5):657–665CrossRef Cabalar AF, Cevik A, Guzelbey IH (2010) Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Comput Appl 19(5):657–665CrossRef
go back to reference Cevik A, Cabalar AF (2009) Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming. Expert Syst Appl 36(4):7749–7757CrossRef Cevik A, Cabalar AF (2009) Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming. Expert Syst Appl 36(4):7749–7757CrossRef
go back to reference Chern SG, Lee CY (2009) CPT-based simplified liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 17(4):326–331 Chern SG, Lee CY (2009) CPT-based simplified liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 17(4):326–331
go back to reference Chern SG, Lee CY, Wang CC (2008) CPT-based liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 16(2):139–148 Chern SG, Lee CY, Wang CC (2008) CPT-based liquefaction assessment by using fuzzy-neural network. J Mar Sci Technol 16(2):139–148
go back to reference Ding SF, Su CY, Yu JZ (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef Ding SF, Su CY, Yu JZ (2011) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162CrossRef
go back to reference Erzin Y, Ecemis N (2015) The use of neural networks for CPT-based liquefaction screening. Bull Eng Geol Environ 74(1):103–116CrossRef Erzin Y, Ecemis N (2015) The use of neural networks for CPT-based liquefaction screening. Bull Eng Geol Environ 74(1):103–116CrossRef
go back to reference Farrokhzad F, Choobbasti AJ, Barari A (2012) Liquefaction microzonation of Babol city using artificial neural network. J King Saud Univ Sci 24(1):89–100CrossRef Farrokhzad F, Choobbasti AJ, Barari A (2012) Liquefaction microzonation of Babol city using artificial neural network. J King Saud Univ Sci 24(1):89–100CrossRef
go back to reference Ghosh S, Das S, Kundu D, Suresh K, Panigrahi BK, Cui ZH (2012) An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Comput Appl 21(2):237–250CrossRef Ghosh S, Das S, Kundu D, Suresh K, Panigrahi BK, Cui ZH (2012) An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Comput Appl 21(2):237–250CrossRef
go back to reference Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480CrossRef Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480CrossRef
go back to reference Goh ATC (1996) Neural network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73CrossRef Goh ATC (1996) Neural network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73CrossRef
go back to reference Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232CrossRef Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232CrossRef
go back to reference Guettaya I, El Ouni MR (2014) In situ-based assessment of soil liquefaction potential-case study of an earth dam in Tunisia. Front Struct Civ Eng 8(4):456–461CrossRef Guettaya I, El Ouni MR (2014) In situ-based assessment of soil liquefaction potential-case study of an earth dam in Tunisia. Front Struct Civ Eng 8(4):456–461CrossRef
go back to reference Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36(4):589–596CrossRef Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36(4):589–596CrossRef
go back to reference Juang CH, Chen CJ, Jiang T, Andrus RD (2000) Risk-based liquefaction potential evaluation using standard penetration tests. Can Geotech J 37(6):1195–1208CrossRef Juang CH, Chen CJ, Jiang T, Andrus RD (2000) Risk-based liquefaction potential evaluation using standard penetration tests. Can Geotech J 37(6):1195–1208CrossRef
go back to reference Juang CH, Yuan HM, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129(1):66–80CrossRef Juang CH, Yuan HM, Lee DH, Lin PS (2003) Simplified cone penetration test-based method for evaluating liquefaction resistance of soils. J Geotech Geoenviron Eng 129(1):66–80CrossRef
go back to reference Karegowda AG, Manjunath AS, Jayaram MA (2011) Application of genetic algorithm optimized neural network connection weights for medical diagnosis of Pima Indians diabetes. Int J Soft Comput 2(2):15–22CrossRef Karegowda AG, Manjunath AS, Jayaram MA (2011) Application of genetic algorithm optimized neural network connection weights for medical diagnosis of Pima Indians diabetes. Int J Soft Comput 2(2):15–22CrossRef
go back to reference Karthikeyan J, Kim D, Aiyer BG, Samui P (2013) SPT-based liquefaction potential assessment by relevance vector machine approach. Eur J Environ Civ Eng 17(4):248–262CrossRef Karthikeyan J, Kim D, Aiyer BG, Samui P (2013) SPT-based liquefaction potential assessment by relevance vector machine approach. Eur J Environ Civ Eng 17(4):248–262CrossRef
go back to reference Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, Perth, Australia. IEEE Service Center, Piscataway, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, Perth, Australia. IEEE Service Center, Piscataway, pp 1942–1948
go back to reference Kumar S, Naresh R (2007) Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Int J Electr Power Energy Syst 29(10):738–747CrossRef Kumar S, Naresh R (2007) Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem. Int J Electr Power Energy Syst 29(10):738–747CrossRef
go back to reference Kurup PU, Dudani NK (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotech Geoenviron 128(4):569–579CrossRef Kurup PU, Dudani NK (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotech Geoenviron 128(4):569–579CrossRef
go back to reference Lee CY, Chern SG (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324 Lee CY, Chern SG (2013) Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 21(3):318–324
go back to reference Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div ASCE 104(9):1197–1200 Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div ASCE 104(9):1197–1200
go back to reference Mughieda O, Bani HK, Safieh B (2009) Liquefaction assessment by artificial neural networks based on CPT. Int J Geotech Eng 2:289–302CrossRef Mughieda O, Bani HK, Safieh B (2009) Liquefaction assessment by artificial neural networks based on CPT. Int J Geotech Eng 2:289–302CrossRef
go back to reference Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36CrossRef Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36CrossRef
go back to reference Padmini D, Ilamparuthi K, Sudheer KP (2008) Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput Geotech 35:33–46CrossRef Padmini D, Ilamparuthi K, Sudheer KP (2008) Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput Geotech 35:33–46CrossRef
go back to reference Pal M (2006) Support vector machines-based modeling of seismic liquefaction potential. Int J Numer Anal Methods 30(10):983–996CrossRef Pal M (2006) Support vector machines-based modeling of seismic liquefaction potential. Int J Numer Anal Methods 30(10):983–996CrossRef
go back to reference Pour MN, Asakereh A (2015) A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas city. Am J Civ Eng 3(2–2):1–5 Pour MN, Asakereh A (2015) A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas city. Am J Civ Eng 3(2–2):1–5
go back to reference Ramakrishnan D, Singh TN, Purwar N, Badre KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12:491–501CrossRef Ramakrishnan D, Singh TN, Purwar N, Badre KS, Gulati A, Gupta S (2008) Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12:491–501CrossRef
go back to reference Ren Z, San Z (2007) Improvement of real-valued genetic algorithm and performance study. Acta Electron Sin 35(2):269–274 Ren Z, San Z (2007) Improvement of real-valued genetic algorithm and performance study. Acta Electron Sin 35(2):269–274
go back to reference Ren C, An N, Wang JZ, Li L, Hu B, Shang D (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Based Syst 56:226–239CrossRef Ren C, An N, Wang JZ, Li L, Hu B, Shang D (2014) Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl Based Syst 56:226–239CrossRef
go back to reference Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) An improved particle swarm optimization for induction motor parameter determination. Int J Comput Appl 1(2):62–67 Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) An improved particle swarm optimization for induction motor parameter determination. Int J Comput Appl 1(2):62–67
go back to reference Samui P (2007) Seismic liquefaction potential assessment by using relevance vector machine. Earthq Eng Eng Vib 6(4):331–336CrossRef Samui P (2007) Seismic liquefaction potential assessment by using relevance vector machine. Earthq Eng Eng Vib 6(4):331–336CrossRef
go back to reference Samui P (2013) Liquefaction prediction using support vector machine model based on cone penetration data. Front Struct Civ Eng 7(1):72–82CrossRef Samui P (2013) Liquefaction prediction using support vector machine model based on cone penetration data. Front Struct Civ Eng 7(1):72–82CrossRef
go back to reference Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11:1–9CrossRef Samui P, Sitharam TG (2011) Machine learning modelling for predicting soil liquefaction susceptibility. Nat Hazards Earth Syst Sci 11:1–9CrossRef
go back to reference Tang Y, Zang YQ, Huang G, Hu X (2005) Granular SVM-RFE gene selection algorithm for reliable prostate cancer classification on microarray expression data. In: Proceedings of the 5th IEEE symposium on bioinformatics and bioengineering (BIBE’05) Tang Y, Zang YQ, Huang G, Hu X (2005) Granular SVM-RFE gene selection algorithm for reliable prostate cancer classification on microarray expression data. In: Proceedings of the 5th IEEE symposium on bioinformatics and bioengineering (BIBE’05)
go back to reference Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connection and connectivity. Parallel Comput 14(3):347–361CrossRef Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connection and connectivity. Parallel Comput 14(3):347–361CrossRef
go back to reference Xue XH, Yang XG (2014) Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method. Nat Hazards 71:2101–2112CrossRef Xue XH, Yang XG (2014) Seismic liquefaction potential assessed by fuzzy comprehensive evaluation method. Nat Hazards 71:2101–2112CrossRef
go back to reference Yamagami Y, Jiang JC (1997) A search for the critical slip surface in three-dimensional slope stability analysis. Soils Found 37(3):1–16CrossRef Yamagami Y, Jiang JC (1997) A search for the critical slip surface in three-dimensional slope stability analysis. Soils Found 37(3):1–16CrossRef
go back to reference Young-Su K, Byung-Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504CrossRef Young-Su K, Byung-Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504CrossRef
go back to reference Zhang G, Robertson PK, Brachman RWI (2004) Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. J Geotech Geoenviron Eng 130(8):861–871CrossRef Zhang G, Robertson PK, Brachman RWI (2004) Estimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration test. J Geotech Geoenviron Eng 130(8):861–871CrossRef
go back to reference Zhao WG (2012) BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor. J Comput 7(9):2318–2323 Zhao WG (2012) BP neural network based on PSO algorithm for temperature characteristics of gas nanosensor. J Comput 7(9):2318–2323
Metadata
Title
Seismic liquefaction potential assessed by neural networks
Authors
Xinhua Xue
Enlong Liu
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 5/2017
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-6523-y

Other articles of this Issue 5/2017

Environmental Earth Sciences 5/2017 Go to the issue