Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multibody modelling involves taking fundamental decisions during the multibody model construction that not only condition its validity for the particular application foreseen but also have fundamental implications on the suitability of the numerical methods used on its analysis. The decision on allowing a particular flexible body to exhibit linear or nonlinear deformations or even to consider it part of the multibody system or as a structural component with which the system interacts is a crucial part of the modeling process. The description of the kinematic relations between moving components can be represented by perfect kinematic constraints or by contact pairs, as when local effects in the joints, generally associated with deviations from nominal conditions or to functional features, must be considered. The interaction of the multibody model with the ‘environment’ may require a substantial modelling effort that involves decisions on geometric description of features, on contact mechanics or even on numerical methodologies to handle co-simulation of systems with equilibrium equations that are solved with different numerical methods. Several areas are transversal to all the challenges identified and discussed here. The suitability of the numerical time integrators not only to handle the multibody model assumptions but also their interaction with other systems are of fundamental importance in the correct solution of the system dynamics. Descriptive and differential geometry also plays a very important role not only in the description of the relative kinematics of the systems but also in the modelling of the interactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hooker, W., Margulies, G.: The dynamical attitude equations for n-body satellite. J. Astronaut. Sci. 12, 123–128 (1965)MathSciNet Hooker, W., Margulies, G.: The dynamical attitude equations for n-body satellite. J. Astronaut. Sci. 12, 123–128 (1965)MathSciNet
2.
go back to reference Kane, T., Scher, M.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5(7), 663–670 (1969)CrossRef Kane, T., Scher, M.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5(7), 663–670 (1969)CrossRef
3.
go back to reference Kane, T., Scher, M.: Human self-rotation by means of limb movements. J. Biomech. 3(1), 39–49 (1970)CrossRef Kane, T., Scher, M.: Human self-rotation by means of limb movements. J. Biomech. 3(1), 39–49 (1970)CrossRef
4.
go back to reference Wittenburg, J.: The dynamics of systems of coupled rigid bodies. A new general formalism with applications. In: Grioli, G. (ed.) Stereodynamics. Edizione Cremonese, Roma (1971) Wittenburg, J.: The dynamics of systems of coupled rigid bodies. A new general formalism with applications. In: Grioli, G. (ed.) Stereodynamics. Edizione Cremonese, Roma (1971)
5.
go back to reference Wittenburg, J., Wolz, U., Schmidt, A.: MESA VERDE – a general-purpose program package for symbolical dynamics simulations of multibody systems. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Heidelberg (1990) Wittenburg, J., Wolz, U., Schmidt, A.: MESA VERDE – a general-purpose program package for symbolical dynamics simulations of multibody systems. In: Schiehlen, W. (ed.) Multibody Systems Handbook. Springer, Heidelberg (1990)
6.
go back to reference Magnus, K.: Dynamics of Multibody Systems. Proceedings of the IUTAM Symposium, Munich, Germany, August 29 – September 3, 1977, Springer, Heidelberg (1978) Magnus, K.: Dynamics of Multibody Systems. Proceedings of the IUTAM Symposium, Munich, Germany, August 29 – September 3, 1977, Springer, Heidelberg (1978)
7.
go back to reference Haug, E.J. (ed.): Computer Aided Analysis and Optimization of Mechanical Systems Dynamics. Springer-Verlag, Heidelberg (1984)MATH Haug, E.J. (ed.): Computer Aided Analysis and Optimization of Mechanical Systems Dynamics. Springer-Verlag, Heidelberg (1984)MATH
8.
go back to reference Bianchi, G., Schiehlen, W. (eds.): Dynamics of Multibody Systems, Proceedings of the IUTAM/IFToMM Symposium, Udine, Italy, September 16–20, 1985. Springer, Heidelberg (1986) Bianchi, G., Schiehlen, W. (eds.): Dynamics of Multibody Systems, Proceedings of the IUTAM/IFToMM Symposium, Udine, Italy, September 16–20, 1985. Springer, Heidelberg (1986)
9.
go back to reference Pereira, M., Ambrosio, J. (eds.): Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO Science Series E, vol. 268. Springer, Dordrecht (1994) Pereira, M., Ambrosio, J. (eds.): Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO Science Series E, vol. 268. Springer, Dordrecht (1994)
11.
12.
go back to reference Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988) Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)
13.
go back to reference Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, San Francisco (1985) Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, San Francisco (1985)
14.
go back to reference Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989) Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)
15.
go back to reference Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)CrossRef Jalon, G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (1994)CrossRef
16.
go back to reference Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics – a review of the state of the art and trends. Mech. Mach. Theory. 7, 19–33 (1972)CrossRef Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics – a review of the state of the art and trends. Mech. Mach. Theory. 7, 19–33 (1972)CrossRef
17.
go back to reference Lowen, G.G., Chassapis, C.: Elastic behavior of linkages: an update. Mech. Mach. Theory. 21, 33–42 (1986)CrossRef Lowen, G.G., Chassapis, C.: Elastic behavior of linkages: an update. Mech. Mach. Theory. 21, 33–42 (1986)CrossRef
18.
go back to reference Thompson, B.S., Sung, G.N.: Survey of finite element techniques for mechanism design. Mech. Mach. Theory. 21, 351–359 (1986)CrossRef Thompson, B.S., Sung, G.N.: Survey of finite element techniques for mechanism design. Mech. Mach. Theory. 21, 351–359 (1986)CrossRef
19.
20.
go back to reference Shabana, A.: Dynamics of Multibody Systems. Wiley, New York (1989)MATH Shabana, A.: Dynamics of Multibody Systems. Wiley, New York (1989)MATH
21.
go back to reference Shabana, A., Wehage, R.: A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct. Mech. 11, 401–431 (1989)CrossRef Shabana, A., Wehage, R.: A coordinate reduction technique for transient analysis of spatial structures with large angular rotations. J. Struct. Mech. 11, 401–431 (1989)CrossRef
22.
go back to reference Meirovitch, L., Nelson, H.D.: On the high-spin motion of a satellite containing elastic parts. J. Spacecr. Rocket. 3, 1597–1602 (1966)CrossRef Meirovitch, L., Nelson, H.D.: On the high-spin motion of a satellite containing elastic parts. J. Spacecr. Rocket. 3, 1597–1602 (1966)CrossRef
23.
go back to reference Modi, V., Suleman, A., Ng, A.: An approach to dynamics and control of orbiting flexible structures. Int. J. Numer. Methods Eng. 32, 1727–1748 (1991)MATHCrossRef Modi, V., Suleman, A., Ng, A.: An approach to dynamics and control of orbiting flexible structures. Int. J. Numer. Methods Eng. 32, 1727–1748 (1991)MATHCrossRef
24.
go back to reference Banerjee, A.K., Nagarajan, S.: Efficient simulation of large overall motion of nonlinearly elastic beams. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996) Banerjee, A.K., Nagarajan, S.: Efficient simulation of large overall motion of nonlinearly elastic beams. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)
25.
go back to reference Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10, 139–151 (1987)CrossRef Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10, 139–151 (1987)CrossRef
26.
go back to reference Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991)MATHCrossRef Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991)MATHCrossRef
27.
go back to reference Geradin, M.: Advanced methods in flexible multibody dynamics: review of element formulations and reduction methods. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996) Geradin, M.: Advanced methods in flexible multibody dynamics: review of element formulations and reduction methods. In: Proceedings of ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies, ESA, Noordwijk, The Netherlands (1996)
28.
go back to reference Belytschko, T., Hsieh, B.J.: Nonlinear transient finite element analysis with convected coordinates. Int. J. Numer. Methods Eng. 7, 255–271 (1973)MATHCrossRef Belytschko, T., Hsieh, B.J.: Nonlinear transient finite element analysis with convected coordinates. Int. J. Numer. Methods Eng. 7, 255–271 (1973)MATHCrossRef
29.
go back to reference Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comp. Methods Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetMATHCrossRef Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comp. Methods Appl. Mech. Eng. 66, 125–161 (1988)MathSciNetMATHCrossRef
30.
go back to reference Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)MATHCrossRef Bathe, K.-J., Bolourchi, S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)MATHCrossRef
31.
go back to reference Cardona, A., Geradin, M.: A beam finite element non linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)MATHCrossRef Cardona, A., Geradin, M.: A beam finite element non linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)MATHCrossRef
32.
go back to reference Geradin, M., Cardona, A.: A modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1594 (1991)MATHCrossRef Geradin, M., Cardona, A.: A modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32, 1565–1594 (1991)MATHCrossRef
33.
go back to reference Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multi-body Syst. Dyn. 1, 339–348 (1997)MathSciNetMATHCrossRef Shabana, A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multi-body Syst. Dyn. 1, 339–348 (1997)MathSciNetMATHCrossRef
34.
go back to reference Ambrósio, J., Nikravesh, P.: Elastic-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)CrossRef Ambrósio, J., Nikravesh, P.: Elastic-plastic deformations in multibody dynamics. Nonlinear Dyn. 3, 85–104 (1992)CrossRef
35.
go back to reference Ambrósio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)MATHCrossRef Ambrósio, J.: Dynamics of structures undergoing gross motion and nonlinear deformations: a multibody approach. Comput. Struct. 59(6), 1001–1012 (1996)MATHCrossRef
36.
go back to reference Pereira, M.S., Ambrósio, J.: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40(4), 655–687 (1997)MATHCrossRef Pereira, M.S., Ambrósio, J.: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40(4), 655–687 (1997)MATHCrossRef
37.
38.
go back to reference Geradin, M., Cardona, E.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001) Geradin, M., Cardona, E.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)
40.
42.
go back to reference Gonzalez-Palacios, M., Angeles, J.: Synthesis of contact surfaces of spherical cam-oscillating roller-follower mechanisms. ASME J. Mech. Des. 116(1), 315–319 (1994)CrossRef Gonzalez-Palacios, M., Angeles, J.: Synthesis of contact surfaces of spherical cam-oscillating roller-follower mechanisms. ASME J. Mech. Des. 116(1), 315–319 (1994)CrossRef
43.
go back to reference Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multi-body. Syst. Dyn. 9(3), 237–264 (2003)MATHCrossRef Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multi-body. Syst. Dyn. 9(3), 237–264 (2003)MATHCrossRef
44.
go back to reference Ambrósio, J., Antunes, P., Pombo, J.: On the requirements of interpolating polynomials for path motion constraints. In: Kecskeméthy, A., Geu Flores, F. (eds.) Interdisciplinary Applications of Kinematics: Proceedings of the International Conference, pp. 179–197. Springer, Dordrecht (2015) Ambrósio, J., Antunes, P., Pombo, J.: On the requirements of interpolating polynomials for path motion constraints. In: Kecskeméthy, A., Geu Flores, F. (eds.) Interdisciplinary Applications of Kinematics: Proceedings of the International Conference, pp. 179–197. Springer, Dordrecht (2015)
45.
go back to reference Tändl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroecker, H.-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Innsbruck University Press, Obergurgl (2006) Tändl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroecker, H.-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Innsbruck University Press, Obergurgl (2006)
46.
go back to reference Tändl, M.: Dynamic Simulation and Design of Roller Coaster Motion. VDI Verlag, Düsseldorf (2009) Tändl, M.: Dynamic Simulation and Design of Roller Coaster Motion. VDI Verlag, Düsseldorf (2009)
47.
go back to reference Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Springer, Dordrecht (2008)MATH Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints. Springer, Dordrecht (2008)MATH
48.
go back to reference Ambrósio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multi-body Syst. Dyn. 22(4), 341–365 (2009)MATHCrossRef Ambrósio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multi-body Syst. Dyn. 22(4), 341–365 (2009)MATHCrossRef
49.
go back to reference Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016) Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(3), 251–267 (2016)
50.
go back to reference Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multi-body Syst. Dyn. 42(3), 317–345 (2018)MathSciNetMATHCrossRef Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multi-body Syst. Dyn. 42(3), 317–345 (2018)MathSciNetMATHCrossRef
51.
go back to reference Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multi-body Syst. Dyn. 42(3), 249–282 (2018)MATHCrossRef Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multi-body Syst. Dyn. 42(3), 249–282 (2018)MATHCrossRef
52.
go back to reference Ambrósio, J.: Efficient kinematic joints descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003)MATHCrossRef Ambrósio, J.: Efficient kinematic joints descriptions for flexible multibody systems experiencing linear and non-linear deformations. Int. J. Numer. Methods Eng. 56, 1771–1793 (2003)MATHCrossRef
54.
go back to reference Cardona, A., Geradin, M., Doan, D.B.: Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput. Methods Appl. Mech. Eng. 89(1–3), 395–418 (1991)CrossRef Cardona, A., Geradin, M., Doan, D.B.: Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput. Methods Appl. Mech. Eng. 89(1–3), 395–418 (1991)CrossRef
55.
go back to reference Bae, D., Han, J., Choi, J.: An implementation method for constrained flexible multibody dynamics using virtual body and joint. Multi-body Syst. Dyn. 4, 207–226 (2000)MATH Bae, D., Han, J., Choi, J.: An implementation method for constrained flexible multibody dynamics using virtual body and joint. Multi-body Syst. Dyn. 4, 207–226 (2000)MATH
56.
go back to reference Gonçalves, J., Ambrósio, J.: Advanced modeling of flexible multibody dynamics using virtual bodies. Comput. Assist. Mech. Eng. Sci. 9(3), 373–390 (2002)MATH Gonçalves, J., Ambrósio, J.: Advanced modeling of flexible multibody dynamics using virtual bodies. Comput. Assist. Mech. Eng. Sci. 9(3), 373–390 (2002)MATH
57.
go back to reference Mashayekhi, M., Kövecses, J.: A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multi-body Syst. Dyn. 40(4), 327–345 (2017)MathSciNetMATHCrossRef Mashayekhi, M., Kövecses, J.: A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem. Multi-body Syst. Dyn. 40(4), 327–345 (2017)MathSciNetMATHCrossRef
58.
go back to reference Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multi-body Syst. Dyn. 38(1), 43–76 (2016)MathSciNetMATHCrossRef Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multi-body Syst. Dyn. 38(1), 43–76 (2016)MathSciNetMATHCrossRef
59.
60.
go back to reference Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multi-body Syst. Dyn. 23(2), 165–190 (2010)MathSciNetMATHCrossRef Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multi-body Syst. Dyn. 23(2), 165–190 (2010)MathSciNetMATHCrossRef
61.
go back to reference Kwak, S.D., Blankevoort, L., Ateshian, G.A.: A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3, 41–64 (2000)CrossRef Kwak, S.D., Blankevoort, L., Ateshian, G.A.: A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3, 41–64 (2000)CrossRef
62.
go back to reference Beia, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)CrossRef Beia, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)CrossRef
63.
go back to reference Machado, M., Flores, P., Pimenta Claro, J.C., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)MATHCrossRef Machado, M., Flores, P., Pimenta Claro, J.C., Ambrósio, J., Silva, M., Completo, A., Lankarani, H.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)MATHCrossRef
64.
go back to reference Anand, V.: Computer Graphics and Geometric Modeling for Engineers. Wiley, New York (1996) Anand, V.: Computer Graphics and Geometric Modeling for Engineers. Wiley, New York (1996)
65.
go back to reference Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17, 437–447 (1852) Frenet, F.: Sur les courbes à double courbure. J. Math. Pures Appl. 17, 437–447 (1852)
66.
go back to reference Machado, M., Flores, P., Ambrósio, J.: A lookup table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(1), 1–10 (2014) Machado, M., Flores, P., Ambrósio, J.: A lookup table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(1), 1–10 (2014)
67.
go back to reference Viegas, M., Ambrósio, J., Antunes, P., Magalhães, H.: Dynamics of a roller coaster vehicle. In: Spriyagin, M., Gordon, T., Cole, C., McSweeney, T. (eds.) Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), Volume 2, pp. 551–556. CRC Press, Taylor and Francis, London (2017) Viegas, M., Ambrósio, J., Antunes, P., Magalhães, H.: Dynamics of a roller coaster vehicle. In: Spriyagin, M., Gordon, T., Cole, C., McSweeney, T. (eds.) Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), Volume 2, pp. 551–556. CRC Press, Taylor and Francis, London (2017)
68.
go back to reference Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multi-body Syst. Dyn. 39(3), 267–290 (2017)MathSciNetMATHCrossRef Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multi-body Syst. Dyn. 39(3), 267–290 (2017)MathSciNetMATHCrossRef
69.
go back to reference Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multi-body Syst. Dyn. 24(1), 103–122 (2010)MathSciNetMATHCrossRef Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multi-body Syst. Dyn. 24(1), 103–122 (2010)MathSciNetMATHCrossRef
70.
go back to reference Haddouni, M., Acary, V., Garreau, S., Beley, J.-D., Brogliato, B.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multi-body Syst. Dyn. 41(3), 201–231 (2017)MathSciNetCrossRef Haddouni, M., Acary, V., Garreau, S., Beley, J.-D., Brogliato, B.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multi-body Syst. Dyn. 41(3), 201–231 (2017)MathSciNetCrossRef
71.
go back to reference Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multi-body Syst. Dyn. 19(1), 91–114 (2008)MATHCrossRef Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multi-body Syst. Dyn. 19(1), 91–114 (2008)MATHCrossRef
72.
go back to reference Pacejka, H.: Tyre and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann, Amsterdam (2012) Pacejka, H.: Tyre and Vehicle Dynamics, 3rd edn. Butterworth-Heinemann, Amsterdam (2012)
73.
go back to reference Hirschberg, W., Rill, G., Weinfurter, H.: Tire model TMeasy. Veh. Syst. Dyn. 45(1), 101–119 (2007)CrossRef Hirschberg, W., Rill, G., Weinfurter, H.: Tire model TMeasy. Veh. Syst. Dyn. 45(1), 101–119 (2007)CrossRef
74.
go back to reference Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Dordrecht (1990)MATHCrossRef Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Dordrecht (1990)MATHCrossRef
75.
go back to reference Harris, T., Kotzalas, M.: Advanced Concepts of Bearing Technology. CRC Press, Boca Raton (2007) Harris, T., Kotzalas, M.: Advanced Concepts of Bearing Technology. CRC Press, Boca Raton (2007)
76.
go back to reference Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994) Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)
77.
go back to reference Hunt, K.H., Grossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 7, 440–445 (1975)CrossRef Hunt, K.H., Grossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 7, 440–445 (1975)CrossRef
78.
go back to reference Ambrósio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Solids A Solids. 19(S), 23–44 (2000) Ambrósio, J.: Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impact conditions. Eur. J. Solids A Solids. 19(S), 23–44 (2000)
79.
go back to reference Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.: A survey of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)MathSciNetCrossRef Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.: A survey of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)MathSciNetCrossRef
80.
go back to reference Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)MATHCrossRef Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)MATHCrossRef
81.
go back to reference Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)MATHCrossRef Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)MATHCrossRef
82.
go back to reference Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, New York (1984)CrossRef Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, New York (1984)CrossRef
83.
go back to reference Haines, D., Ollerton, E.: Contact stress distribution on elliptical contact surfaces subjected to radial and tangential forces. Proc. Inst. Mech. Eng. 177, 95–114 (1963)CrossRef Haines, D., Ollerton, E.: Contact stress distribution on elliptical contact surfaces subjected to radial and tangential forces. Proc. Inst. Mech. Eng. 177, 95–114 (1963)CrossRef
84.
go back to reference Magalhães, H., Madeira, J., Ambrósio, J., Pombo, J.: Railway vehicle performance optimization using virtual homologation. Veh. Syst. Dyn. 54(9), 1177–1207 (2016)CrossRef Magalhães, H., Madeira, J., Ambrósio, J., Pombo, J.: Railway vehicle performance optimization using virtual homologation. Veh. Syst. Dyn. 54(9), 1177–1207 (2016)CrossRef
85.
go back to reference Polach, O.: A fast wheel-rail forces calculation computer code. Veh. Syst Dyn. 33, 782–739 (1999) Polach, O.: A fast wheel-rail forces calculation computer code. Veh. Syst Dyn. 33, 782–739 (1999)
86.
go back to reference Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005)CrossRef Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005)CrossRef
87.
go back to reference Sichani, M.S., Enblom, R., Berg, M.: A novel method to model wheel-rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014)CrossRef Sichani, M.S., Enblom, R., Berg, M.: A novel method to model wheel-rail normal contact in vehicle dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014)CrossRef
88.
go back to reference Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)CrossRef Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)CrossRef
89.
go back to reference Escalona, J., Aceituno, J.: Modeling wheel-rail contact with pre-calculated lookup tables in arbitrary-geometry tracks with irregularities. In: ASME Proceedings of the 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, USA, August 2–5, Paper No. DETC2015-47306 (2015) Escalona, J., Aceituno, J.: Modeling wheel-rail contact with pre-calculated lookup tables in arbitrary-geometry tracks with irregularities. In: ASME Proceedings of the 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, USA, August 2–5, Paper No. DETC2015-47306 (2015)
90.
go back to reference Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multi-body Syst. Dyn. 38(4), 367–389 (2016)MathSciNetCrossRef Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multi-body Syst. Dyn. 38(4), 367–389 (2016)MathSciNetCrossRef
91.
go back to reference Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multi-body Syst. Dyn. 40(4), 407–436 (2017)MathSciNetMATHCrossRef Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multi-body Syst. Dyn. 40(4), 407–436 (2017)MathSciNetMATHCrossRef
92.
go back to reference Wang, G., Qi, Z., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid. Multi-body Syst. Dyn. 39(4), 311–335 (2017)MathSciNetMATHCrossRef Wang, G., Qi, Z., Wang, J.: A differential approach for modeling revolute clearance joints in planar rigid. Multi-body Syst. Dyn. 39(4), 311–335 (2017)MathSciNetMATHCrossRef
93.
go back to reference Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics., 1–4 July, pp. 1153–1162. University of Zagreb, Croatia (2013) Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics., 1–4 July, pp. 1153–1162. University of Zagreb, Croatia (2013)
94.
go back to reference Ambrósio, J., Pombo, J.: MUltiBOdy Dynamic Analysis Program – MUBODyn: User’s Manual, Technical Report IDMEC-CPM. Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon (2016) Ambrósio, J., Pombo, J.: MUltiBOdy Dynamic Analysis Program – MUBODyn: User’s Manual, Technical Report IDMEC-CPM. Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon (2016)
95.
go back to reference Gear, G.: Numerical simulation of differential-algebraic equations. IEEE Trans. Circ Theory. 18, 89–95 (1981)CrossRef Gear, G.: Numerical simulation of differential-algebraic equations. IEEE Trans. Circ Theory. 18, 89–95 (1981)CrossRef
96.
go back to reference Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)MATH Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)MATH
97.
go back to reference Ambrósio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015) Ambrósio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015)
Metadata
Title
Selected Challenges in Realistic Multibody Modeling of Machines and Vehicles
Author
Jorge Ambrósio
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-00527-6_1