Skip to main content
Top
Published in: Neural Computing and Applications 9/2021

04-08-2020 | Original Article

Selecting data adaptive learner from multiple deep learners using Bayesian networks

Authors: Shusuke Kobayashi, Susumu Shirayama

Published in: Neural Computing and Applications | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A method to predict time series using multiple deep learners and a Bayesian network is proposed. In this study, the input explanatory variables are Bayesian network nodes that are associated with learners. Training data are divided using K-means clustering, and multiple deep learners are trained depending on the cluster. A Bayesian network is used to determine which deep learner is in charge of predicting a time series. We determine a threshold value and select learners with a posterior probability equal to or greater than the threshold value, which could facilitate more robust prediction. The proposed method is applied to financial time-series data, and the predicted results for the Nikkei 225 index are demonstrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bergstra J, Bengio Y (2012) Random search for hyperparameter optimization. J Mach Learn Res 13:281–305MathSciNetMATH Bergstra J, Bengio Y (2012) Random search for hyperparameter optimization. J Mach Learn Res 13:281–305MathSciNetMATH
2.
go back to reference Loshchilov I, Hutter F (2016) CMA-ES for hyperparameter optimization of deep neural networks. CoRR Loshchilov I, Hutter F (2016) CMA-ES for hyperparameter optimization of deep neural networks. CoRR
3.
go back to reference Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR (2017) Particle swarm optimization for hyper- parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary computation conference. ACM, pp 481–488 Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR (2017) Particle swarm optimization for hyper- parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary computation conference. ACM, pp 481–488
4.
go back to reference Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp 2951–2959 Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Advances in neural information processing systems, pp 2951–2959
5.
go back to reference Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time-series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137:47–56CrossRef Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time-series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137:47–56CrossRef
6.
go back to reference Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160 Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems, pp 153–160
7.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
8.
go back to reference Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing 20(1):30–42CrossRef Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech, and language processing 20(1):30–42CrossRef
9.
go back to reference Wang HZ, Li GQ, Wang GB, Peng JC, Jiang H, Liu YT (2017) Deep learning based ensemble approach for probabilistic wind power forecasting. Appl Energy 188:56–70CrossRef Wang HZ, Li GQ, Wang GB, Peng JC, Jiang H, Liu YT (2017) Deep learning based ensemble approach for probabilistic wind power forecasting. Appl Energy 188:56–70CrossRef
10.
go back to reference Suk HI, Lee SW, Shen D, Alzheimerer’s (2017) Disease neuroimaging initiative deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal 3:101–113CrossRef Suk HI, Lee SW, Shen D, Alzheimerer’s (2017) Disease neuroimaging initiative deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal 3:101–113CrossRef
11.
go back to reference Zhao Y, Li J, Yu L (2017) A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66:9–16CrossRef Zhao Y, Li J, Yu L (2017) A deep learning ensemble approach for crude oil price forecasting. Energy Econ 66:9–16CrossRef
12.
go back to reference Takahashi Y, Asada M (1999) Behavior acquisition by multi-layered reinforcement learning. In: Proceedings of 1999 IEEE international conference on systems, man, and cybernetics, pp 716–721 Takahashi Y, Asada M (1999) Behavior acquisition by multi-layered reinforcement learning. In: Proceedings of 1999 IEEE international conference on systems, man, and cybernetics, pp 716–721
13.
go back to reference Jacob RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixture of local experts. Neural Comput 3(1):79–87CrossRef Jacob RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixture of local experts. Neural Comput 3(1):79–87CrossRef
14.
go back to reference Zhang H, Liu G, Chow TWS, Liu W (2011) Textual and visual content-based anti-phishing: a Bayesian approach. IEEE Trans Neural Netw 22(10):1532–1546CrossRef Zhang H, Liu G, Chow TWS, Liu W (2011) Textual and visual content-based anti-phishing: a Bayesian approach. IEEE Trans Neural Netw 22(10):1532–1546CrossRef
15.
go back to reference Kobayashi S, Shirayama S (2017) Time series forecasting with multiple deep learners: selection from a Bayesian network. J Data Anal Inf Process 5:115–130 Kobayashi S, Shirayama S (2017) Time series forecasting with multiple deep learners: selection from a Bayesian network. J Data Anal Inf Process 5:115–130
16.
go back to reference Nomiya H, Uehara K (2007) Multistrategical image classification for image data mining. In: Proceedings of international workshop on multimedia data mining, pp 22–30 Nomiya H, Uehara K (2007) Multistrategical image classification for image data mining. In: Proceedings of international workshop on multimedia data mining, pp 22–30
17.
go back to reference Takahashi Y, Takeda M, Asada M (1999) Continuous valued Q-learning for vision-guided behavior acquisition. In: Proceedings of 1999 IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 255–260 Takahashi Y, Takeda M, Asada M (1999) Continuous valued Q-learning for vision-guided behavior acquisition. In: Proceedings of 1999 IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 255–260
18.
go back to reference Collobert R, Bengio S, Bengio Y (2002) A parallel mixture of SVMs for very large scale problems. Neural Comput 14(5):1105–1114CrossRef Collobert R, Bengio S, Bengio Y (2002) A parallel mixture of SVMs for very large scale problems. Neural Comput 14(5):1105–1114CrossRef
19.
go back to reference Tresp V (2000) Mixture of Gaussian processes. In: Proceedings of the 13th international conference on neural information proceeding system, pp 633–639 Tresp V (2000) Mixture of Gaussian processes. In: Proceedings of the 13th international conference on neural information proceeding system, pp 633–639
20.
go back to reference Theis L, Bethge M (2015) Generative image modeling using spatial LSTMs. In: Proceedings of the 28th international conference on neural information proceeding system, pp 1927–1935 Theis L, Bethge M (2015) Generative image modeling using spatial LSTMs. In: Proceedings of the 28th international conference on neural information proceeding system, pp 1927–1935
21.
go back to reference Deisenroth MP, Ng JW (2015) Distributed Gaussian processes. In: Proceedings of the 32nd international conference on international conference on machine learning, pp 1481–1490 Deisenroth MP, Ng JW (2015) Distributed Gaussian processes. In: Proceedings of the 32nd international conference on international conference on machine learning, pp 1481–1490
22.
go back to reference Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Mach Learn Res 10:1829–1850MathSciNetMATH Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Mach Learn Res 10:1829–1850MathSciNetMATH
23.
go back to reference Eigen D, Ranzato MA, Sutskever I (2004) Learning factored representations in a deep mixture of experts. In: Workshop proceedings of the international conference on learning representations Eigen D, Ranzato MA, Sutskever I (2004) Learning factored representations in a deep mixture of experts. In: Workshop proceedings of the international conference on learning representations
24.
go back to reference Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017) Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. In: Conference proceedings of the international conference on learning representations Shazeer N, Mirhoseini A, Maziarz K, Davis A, Le Q, Hinton G, Dean J (2017) Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. In: Conference proceedings of the international conference on learning representations
25.
go back to reference Gross S, Gross S, Ranzato M, Szlam A (2017) Hard mixtures of experts for large scale weakly supervised vision. In: 2017 IEEE conference on computer vision and pattern recognition, pp 5085–5093 Gross S, Gross S, Ranzato M, Szlam A (2017) Hard mixtures of experts for large scale weakly supervised vision. In: 2017 IEEE conference on computer vision and pattern recognition, pp 5085–5093
26.
go back to reference Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of 7th international conference on machine learning, pp 727—734 Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of 7th international conference on machine learning, pp 727—734
27.
go back to reference Geiger D, Heckerman D (1994) Learning Gaussian networks. In: Tenth conference on uncertainty in artificial intelligence, pp 235–243 Geiger D, Heckerman D (1994) Learning Gaussian networks. In: Tenth conference on uncertainty in artificial intelligence, pp 235–243
28.
go back to reference Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the annual conference of international speech communication association, pp 338–342 Sak H, Senior A, Beaufays F (2014) Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the annual conference of international speech communication association, pp 338–342
29.
go back to reference Scutari M, Vitolo C, Tucker A (2019) Learning Bayesian networks from big data with greedy search: computational complexity and efficient implementation. Stat Comput 29:1095–1108MathSciNetCrossRef Scutari M, Vitolo C, Tucker A (2019) Learning Bayesian networks from big data with greedy search: computational complexity and efficient implementation. Stat Comput 29:1095–1108MathSciNetCrossRef
30.
go back to reference Scutari M (2010) Learning Bayesian networks with the bnlearn R Package. J Stat Softw 35(3):1–22CrossRef Scutari M (2010) Learning Bayesian networks with the bnlearn R Package. J Stat Softw 35(3):1–22CrossRef
Metadata
Title
Selecting data adaptive learner from multiple deep learners using Bayesian networks
Authors
Shusuke Kobayashi
Susumu Shirayama
Publication date
04-08-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05234-6

Other articles of this Issue 9/2021

Neural Computing and Applications 9/2021 Go to the issue

Premium Partner