Skip to main content
Top
Published in:

10-07-2024

Selection of materials and technologies for the electrochemical synthesis of sodium ferrate

Authors: Ani P. Petkova, Sergey M. Gorbatyuk, Guzel R. Sharafutdinova, Vladimir A. Nagovitsyn

Published in: Metallurgist | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrochemical synthesis of sodium ferrate for water purification is a promising solution to the problem of clean water. The materials and methods required for the process are considered. Particular attention is paid to the material and technology of obtaining an electrolytic cell that ensures stable and safe production of sodium ferrate. Different recirculation rates and their influence on the final product are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kashulin NA, Dauval’ter VA, Sandimirov SS, Terent’ev PM, Denisov DB (2011) Influence of nonferrous metallurgy on subarctic freshwater ecosystems. Tsvetn Metal (11):71–75 Kashulin NA, Dauval’ter VA, Sandimirov SS, Terent’ev PM, Denisov DB (2011) Influence of nonferrous metallurgy on subarctic freshwater ecosystems. Tsvetn Metal (11):71–75
2.
go back to reference Reznichenko RO, Karshev KO, Baranov VV (2019) Cleaning of wastewater from ions of heavy metals using a sorbent based on wool-washing waste. In: Proc. All-Russia Sci.-Appl. Conf. on Ecology: Yesterday, Today, Tomorrow, vol 30. Makhachkala, pp 422–426 (October) Reznichenko RO, Karshev KO, Baranov VV (2019) Cleaning of wastewater from ions of heavy metals using a sorbent based on wool-washing waste. In: Proc. All-Russia Sci.-Appl. Conf. on Ecology: Yesterday, Today, Tomorrow, vol 30. Makhachkala, pp 422–426 (October)
3.
go back to reference Maksimova SA, Avanesyan NM (2022) Pollution of reservoirs with wastewaters as a hazard to environmental safety. In: Proc. 56th Sci-Tech. Conf. on High-School Science in Modern Conditions, vol 24–29. Ulyanovsk, pp 207–208 (January) Maksimova SA, Avanesyan NM (2022) Pollution of reservoirs with wastewaters as a hazard to environmental safety. In: Proc. 56th Sci-Tech. Conf. on High-School Science in Modern Conditions, vol 24–29. Ulyanovsk, pp 207–208 (January)
4.
go back to reference Wang J, Chen C (2015) The current status of heavy metal pollution and treatment technology development in China. Envir Technol Rev 4(1):39–53CrossRef Wang J, Chen C (2015) The current status of heavy metal pollution and treatment technology development in China. Envir Technol Rev 4(1):39–53CrossRef
5.
go back to reference Pashkevich MA, Bykova MV (2022) Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry. J Min Inst 253:49–60 Pashkevich MA, Bykova MV (2022) Methodology for thermal desorption treatment of local soil pollution by oil products at the facilities of the mineral resource industry. J Min Inst 253:49–60
6.
go back to reference Korshunov GI, Safina AM, Karimov AM (2021) Study and analysis of sources of respirable dust at coal mines. Bezopasn Truda V Promyshl 10:65–70 Korshunov GI, Safina AM, Karimov AM (2021) Study and analysis of sources of respirable dust at coal mines. Bezopasn Truda V Promyshl 10:65–70
7.
go back to reference Korshunov GI, Karimov AM, Magomedov GS, Tyul’kin SA (2023) Reduction of the anthropogenic impact of respirable dust on the quarry personnel during large-scale blasting. Gorn Inform-analit Byull 7:132–144 Korshunov GI, Karimov AM, Magomedov GS, Tyul’kin SA (2023) Reduction of the anthropogenic impact of respirable dust on the quarry personnel during large-scale blasting. Gorn Inform-analit Byull 7:132–144
8.
go back to reference Yu. Piirainen V, Barinkova AA (2023) Development of composite materials based on red mud. Obogashch Rud 3:37–43 Yu. Piirainen V, Barinkova AA (2023) Development of composite materials based on red mud. Obogashch Rud 3:37–43
9.
go back to reference Cheremisina O, Litvinova T, Sergeev V, Ponomareva M, Mashukova J (2021) Application of the organic waste-based sorbent for the purification of aqueous solutions. Water 13(21):3101CrossRef Cheremisina O, Litvinova T, Sergeev V, Ponomareva M, Mashukova J (2021) Application of the organic waste-based sorbent for the purification of aqueous solutions. Water 13(21):3101CrossRef
10.
go back to reference Sozina ID, Danilov AS (2023) Microbiological remediation of oil-contaminated soils. J Min Inst (260):297–312 Sozina ID, Danilov AS (2023) Microbiological remediation of oil-contaminated soils. J Min Inst (260):297–312
11.
go back to reference Alsheyab M, Jiang JQ, Stanford C (2009) On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment—A review. J Environ Manag 90(3):1350–1356CrossRef Alsheyab M, Jiang JQ, Stanford C (2009) On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment—A review. J Environ Manag 90(3):1350–1356CrossRef
12.
go back to reference Liu K, Yi Y, Zhang N (2021) Anodic oxidation produces active chlorine to treat oilfield wastewater and prepare ferrate (VI). J Water Process Eng 41:101998CrossRef Liu K, Yi Y, Zhang N (2021) Anodic oxidation produces active chlorine to treat oilfield wastewater and prepare ferrate (VI). J Water Process Eng 41:101998CrossRef
13.
go back to reference Shulaev NS, Pryanichnikova VV, Kadyrov RR (2021) Regularities of electrochemical cleaning of oil-contaminated soils. Zap Gorn Inst 252:937–946 Shulaev NS, Pryanichnikova VV, Kadyrov RR (2021) Regularities of electrochemical cleaning of oil-contaminated soils. Zap Gorn Inst 252:937–946
14.
go back to reference Orekhova AI, Khalemskii AM, Sherstobitova TM, Kogan BS (2013) Purification of wastewaters of the Urals using new oxidizing agent. Tsvetn Metall (4):64–67 Orekhova AI, Khalemskii AM, Sherstobitova TM, Kogan BS (2013) Purification of wastewaters of the Urals using new oxidizing agent. Tsvetn Metall (4):64–67
15.
go back to reference Yingxin W, Xueting Z, Honglong B, Bingyan L, Laisheng L, Qiangqiang S, Siya F (2015) Preparation of potassium ferrate and its effectiveness on the removal of As(III) and Pb(II)[J. J South China Norm Univ 47(4):80–87 (Natural Science Edition) Yingxin W, Xueting Z, Honglong B, Bingyan L, Laisheng L, Qiangqiang S, Siya F (2015) Preparation of potassium ferrate and its effectiveness on the removal of As(III) and Pb(II)[J. J South China Norm Univ 47(4):80–87 (Natural Science Edition)
16.
go back to reference Prucek R et al (2015) Ferrate (VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environ Sci Techn 49(4):2319–2327CrossRef Prucek R et al (2015) Ferrate (VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environ Sci Techn 49(4):2319–2327CrossRef
17.
go back to reference Dong S, Mu Y, Sun X (2019) Removal of toxic metals using ferrate (VI): a review. Water Sci Techn 80(7):1213–1225CrossRef Dong S, Mu Y, Sun X (2019) Removal of toxic metals using ferrate (VI): a review. Water Sci Techn 80(7):1213–1225CrossRef
18.
go back to reference Talaiekhozani A, Talaei MR, Rezania S (2017) An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J Environ Chem Eng 5(2):1828–1842CrossRef Talaiekhozani A, Talaei MR, Rezania S (2017) An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. J Environ Chem Eng 5(2):1828–1842CrossRef
19.
go back to reference Korotaeva AE, Pashkevich MA (2021) Spectrum survey data application in ecological monitoring of aquatic vegetation. Min Inf Anal Bull 5:231–244CrossRef Korotaeva AE, Pashkevich MA (2021) Spectrum survey data application in ecological monitoring of aquatic vegetation. Min Inf Anal Bull 5:231–244CrossRef
20.
go back to reference Wang Z, Shi J, Zhong C (2021) Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa Coppermine. J Min Inst 247:102–113 Wang Z, Shi J, Zhong C (2021) Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa Coppermine. J Min Inst 247:102–113
21.
go back to reference Wang Y et al (2022) Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis. J Water Process Eng 49:103055CrossRef Wang Y et al (2022) Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis. J Water Process Eng 49:103055CrossRef
22.
go back to reference Czolderova M et al (2018) 3D printed polyvinyl alcohol ferrate (VI) capsules: effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem Eng J 349:269–275CrossRef Czolderova M et al (2018) 3D printed polyvinyl alcohol ferrate (VI) capsules: effective means for the removal of pharmaceuticals and illicit drugs from wastewater. Chem Eng J 349:269–275CrossRef
23.
go back to reference Mytsyk EI, Smirnov AS (2018) Studying the technology of purification of toxic printing wastewaters with a sodium ferrate solution. Nedelya Nauki Spbpu: 80–83 Mytsyk EI, Smirnov AS (2018) Studying the technology of purification of toxic printing wastewaters with a sodium ferrate solution. Nedelya Nauki Spbpu: 80–83
24.
go back to reference Arakcheev EN et al (2017) Experimental justification of the expediency of disinfecting and purifying water and runoffs with sodium ferrate. Gigiena I Sanit 96(3):216–222CrossRef Arakcheev EN et al (2017) Experimental justification of the expediency of disinfecting and purifying water and runoffs with sodium ferrate. Gigiena I Sanit 96(3):216–222CrossRef
25.
go back to reference Diaz М et al (2019) Unravelling the mechanisms controlling the electrogeneration of ferrate using four iron salts in boron-doped diamond electrodes. J Electroanal Chem 854:113501CrossRef Diaz М et al (2019) Unravelling the mechanisms controlling the electrogeneration of ferrate using four iron salts in boron-doped diamond electrodes. J Electroanal Chem 854:113501CrossRef
26.
go back to reference Sun X et al (2018) Electrochemical synthesis of ferrate (VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. J Hazard Mater 344:1155–1164CrossRefPubMed Sun X et al (2018) Electrochemical synthesis of ferrate (VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. J Hazard Mater 344:1155–1164CrossRefPubMed
27.
go back to reference Yu. Andreyev S et al (2020) Studying the electrochemical synthesis of sodium ferrate in the anode compartments of an electrolytic membrane cell. Reg Arkhitekt Stroit (2):142–149 Yu. Andreyev S et al (2020) Studying the electrochemical synthesis of sodium ferrate in the anode compartments of an electrolytic membrane cell. Reg Arkhitekt Stroit (2):142–149
29.
go back to reference El Kateb M et al (2022) Ferrate (VI) pre-treatment and subsequent electrochemical advanced oxidation processes: recycling iron for enhancing oxidation of organic pollutants. Chem Eng J 431:134–177CrossRef El Kateb M et al (2022) Ferrate (VI) pre-treatment and subsequent electrochemical advanced oxidation processes: recycling iron for enhancing oxidation of organic pollutants. Chem Eng J 431:134–177CrossRef
30.
go back to reference Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part 2: influence of anode composition. J Appl Electrochem 26(8):823–827CrossRef Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part 2: influence of anode composition. J Appl Electrochem 26(8):823–827CrossRef
31.
go back to reference Ding L, Liang H, Li X (2012) Oxidation of CH3SH by in situ generation of ferrate (VI) in aqueous alkaline solution for odour treatment. Sep Purif Techn 91:117–124CrossRef Ding L, Liang H, Li X (2012) Oxidation of CH3SH by in situ generation of ferrate (VI) in aqueous alkaline solution for odour treatment. Sep Purif Techn 91:117–124CrossRef
32.
go back to reference Lapicque F, Valentin G (2002) Direct electrochemical preparation of solid potassium ferrate. Electrochem Communic 4(10):764–766CrossRef Lapicque F, Valentin G (2002) Direct electrochemical preparation of solid potassium ferrate. Electrochem Communic 4(10):764–766CrossRef
33.
go back to reference Ren Y et al (2008) Usage of anisomeric square pulse with fluctuating frequency for electrochemical generation of in CS–CMC bipolar membrane electrolysis cell. Chem Eng Process Process Intensif 47(4):708–715CrossRef Ren Y et al (2008) Usage of anisomeric square pulse with fluctuating frequency for electrochemical generation of in CS–CMC bipolar membrane electrolysis cell. Chem Eng Process Process Intensif 47(4):708–715CrossRef
34.
go back to reference De Koninck M, Brousse T, Belanger D (2003) The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochim Acta 48(10):1425–1433CrossRef De Koninck M, Brousse T, Belanger D (2003) The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochim Acta 48(10):1425–1433CrossRef
35.
go back to reference Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part I: dissolution of an iron wool bed anode. J Appl Electrochem 26:815–822CrossRef Denvir A, Pletcher D (1996) Electrochemical generation of ferrate part I: dissolution of an iron wool bed anode. J Appl Electrochem 26:815–822CrossRef
36.
go back to reference El Maghraoui A et al (2015) Process for the synthesis of ferrate (VI) Alkali metal dry. Adv Mater Phys Chem 5(1):10CrossRef El Maghraoui A et al (2015) Process for the synthesis of ferrate (VI) Alkali metal dry. Adv Mater Phys Chem 5(1):10CrossRef
37.
go back to reference El Maghraoui A et al (2015) Effect of degree of CIO hypochlorite on the wet synthesis of ferrate (VI). Adv Mater Phys Chem 5(4):133CrossRef El Maghraoui A et al (2015) Effect of degree of CIO hypochlorite on the wet synthesis of ferrate (VI). Adv Mater Phys Chem 5(4):133CrossRef
38.
go back to reference Jiang JQ, Stanford C, Petri M (2018) Practical application of ferrate (VI) for water and wastewater treatment-Site study’s approach. Water-energy Nexus 1(1):42–46CrossRef Jiang JQ, Stanford C, Petri M (2018) Practical application of ferrate (VI) for water and wastewater treatment-Site study’s approach. Water-energy Nexus 1(1):42–46CrossRef
39.
go back to reference Walz KA et al (2006) Stabilization of iron (VI) ferrate cathode materials using nanoporous silica coatings. J Electrochem Soc 153(6):A1102CrossRef Walz KA et al (2006) Stabilization of iron (VI) ferrate cathode materials using nanoporous silica coatings. J Electrochem Soc 153(6):A1102CrossRef
40.
go back to reference Diaz M et al (2021) Towards in situ electro-generation offerrate for drinking water treatment: a comparison of three low-cost sacrificial iron electrodes. J Electroanal Chem 880:114897CrossRef Diaz M et al (2021) Towards in situ electro-generation offerrate for drinking water treatment: a comparison of three low-cost sacrificial iron electrodes. J Electroanal Chem 880:114897CrossRef
41.
go back to reference He W et al (2006) The rapid electrochemical preparation of dissolved ferrate (VI): Effects of various operating parameters. Electrochim Acta 51(10):1967–1973CrossRef He W et al (2006) The rapid electrochemical preparation of dissolved ferrate (VI): Effects of various operating parameters. Electrochim Acta 51(10):1967–1973CrossRef
42.
go back to reference Arakcheev EN (2017) Integrated equipment and processes of industrial production of Anolyte and Ferrate. SPbPU, St. Petersburg (Author’s Abstract of PhD Thesis) Arakcheev EN (2017) Integrated equipment and processes of industrial production of Anolyte and Ferrate. SPbPU, St. Petersburg (Author’s Abstract of PhD Thesis)
43.
go back to reference Pryakhin EI, Troshina EY (2023) Study of technological and operational features of high-temperature-resistant composite films for laser marking of parts made of ferrous alloys. Chern Met 4:74–80CrossRef Pryakhin EI, Troshina EY (2023) Study of technological and operational features of high-temperature-resistant composite films for laser marking of parts made of ferrous alloys. Chern Met 4:74–80CrossRef
Metadata
Title
Selection of materials and technologies for the electrochemical synthesis of sodium ferrate
Authors
Ani P. Petkova
Sergey M. Gorbatyuk
Guzel R. Sharafutdinova
Vladimir A. Nagovitsyn
Publication date
10-07-2024
Publisher
Springer US
Published in
Metallurgist / Issue 3/2024
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-024-01747-w

Premium Partners