Skip to main content
Top

2021 | OriginalPaper | Chapter

Selective Pseudo-Label Clustering

Authors : Louis Mahon, Thomas Lukasiewicz

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep neural networks (DNNs) offer a means of addressing the challenging task of clustering high-dimensional data. DNNs can extract useful features, and so produce a lower dimensional representation, which is more amenable to clustering techniques. As clustering is typically performed in a purely unsupervised setting, where no training labels are available, the question then arises as to how the DNN feature extractor can be trained. The most accurate existing approaches combine the training of the DNN with the clustering objective, so that information from the clustering process can be used to update the DNN to produce better features for clustering. One problem with this approach is that these “pseudo-labels” produced by the clustering algorithm are noisy, and any errors that they contain will hurt the training of the DNN. In this paper, we propose selective pseudo-label clustering, which uses only the most confident pseudo-labels for training the DNN. We formally prove the performance gains under certain conditions. Applied to the task of image clustering, the new approach achieves a state-of-the-art performance on three popular image datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abavisani, M., Patel, V.M.: Deep multimodal subspace clustering networks. IEEE J. Sel. Top. Signal Process. 12(6), 1601–1614 (2018)CrossRef Abavisani, M., Patel, V.M.: Deep multimodal subspace clustering networks. IEEE J. Sel. Top. Signal Process. 12(6), 1601–1614 (2018)CrossRef
2.
3.
go back to reference Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)MathSciNetCrossRef Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)MathSciNetCrossRef
4.
go back to reference Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MATH Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MATH
5.
6.
go back to reference Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV, pp. 132–149 (2018) Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV, pp. 132–149 (2018)
7.
go back to reference Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of ICCV, pp. 5879–5887 (2017) Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of ICCV, pp. 5879–5887 (2017)
8.
go back to reference Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)CrossRef Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)CrossRef
9.
go back to reference Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)CrossRef Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)CrossRef
10.
go back to reference Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH
12.
go back to reference Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks, generating art by learning about styles and deviating from style norms. arXiv:1706.07068 (2017) Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks, generating art by learning about styles and deviating from style norms. arXiv:​1706.​07068 (2017)
13.
go back to reference Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clustering with concrete k-means. In: Proceedings of ICASSP, pp. 4252–4256. IEEE (2020) Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clustering with concrete k-means. In: Proceedings of ICASSP, pp. 4252–4256. IEEE (2020)
14.
go back to reference Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of ICCV (2017) Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of ICCV (2017)
15.
go back to reference Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp. 2672–2680 (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp. 2672–2680 (2014)
16.
go back to reference Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of IJCAI, pp. 1753–1759 (2017) Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of IJCAI, pp. 1753–1759 (2017)
17.
go back to reference Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmentation. In: Proceedings of Asian Conference on Machine Learning, pp. 550–565 (2018) Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmentation. In: Proceedings of Asian Conference on Machine Learning, pp. 550–565 (2018)
18.
go back to reference Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012) Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:​1207.​0580 (2012)
19.
go back to reference Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: Proceedings of ICPR, pp. 1532–1537. IEEE (2014) Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: Proceedings of ICPR, pp. 1532–1537. IEEE (2014)
20.
go back to reference Hull, J.J.: A database for handwritten text recognition research. TPAMI 16(5), 550–554 (1994)CrossRef Hull, J.J.: A database for handwritten text recognition research. TPAMI 16(5), 550–554 (1994)CrossRef
21.
go back to reference Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. arXiv:1611.05148 (2016) Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. arXiv:​1611.​05148 (2016)
22.
go back to reference Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of CVPR (2019) Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of CVPR (2019)
23.
go back to reference Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. TPAMI 20(3), 226–239 (1998)CrossRef Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. TPAMI 20(3), 226–239 (1998)CrossRef
24.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012)
25.
26.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
28.
29.
go back to reference Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inf. Theory (1957/1982) 18, 129–137 (1957) Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inf. Theory (1957/1982) 18, 129–137 (1957)
30.
go back to reference McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv:1908.05968 (2019) McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv:​1908.​05968 (2019)
31.
go back to reference McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Sour. Softw. 2(11), 205 (2017)CrossRef McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Sour. Softw. 2(11), 205 (2017)CrossRef
32.
go back to reference McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018) McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:​1802.​03426 (2018)
33.
go back to reference Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clustering: on a better trade-off between feature randomness and feature drift. arXiv:1909.11832 (2019) Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clustering: on a better trade-off between feature randomness and feature drift. arXiv:​1909.​11832 (2019)
34.
go back to reference Mrabah, N., Khan, N.M., Ksantini, R., Lachiri, Z.: Deep clustering with a dynamic autoencoder: From reconstruction towards centroids construction. arXiv:1901.07752 (2019) Mrabah, N., Khan, N.M., Ksantini, R., Lachiri, Z.: Deep clustering with a dynamic autoencoder: From reconstruction towards centroids construction. arXiv:​1901.​07752 (2019)
35.
go back to reference Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering in generative adversarial networks. arXiv:1809.03627 (2019) Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering in generative adversarial networks. arXiv:​1809.​03627 (2019)
36.
go back to reference Opitz, D.W., Maclin, R.F.: An empirical evaluation of bagging and boosting for artificial neural networks. In: Proceedings of ICNN, vol. 3, pp. 1401–1405. IEEE (1997) Opitz, D.W., Maclin, R.F.: An empirical evaluation of bagging and boosting for artificial neural networks. In: Proceedings of ICNN, vol. 3, pp. 1401–1405. IEEE (1997)
37.
go back to reference Pearlmutter, B.A., Rosenfeld, R.: Chaitin-Kolmogorov complexity and generalization in neural networks. In: Proceedings of NIPS, pp. 925–931 (1991) Pearlmutter, B.A., Rosenfeld, R.: Chaitin-Kolmogorov complexity and generalization in neural networks. In: Proceedings of NIPS, pp. 925–931 (1991)
38.
go back to reference Perrone, M.P.: Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. thesis (1993) Perrone, M.P.: Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. thesis (1993)
39.
go back to reference Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowl.-Based Syst. 197, 105841 (2020) Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowl.-Based Syst. 197, 105841 (2020)
40.
go back to reference Wang, Y., Zhang, L., Nie, F., Li, X., Chen, Z., Wang, F.: WeGAN: deep image hashing with weighted generative adversarial networks. IEEE Trans. Multimed. 22, 1458–1469 (2019)CrossRef Wang, Y., Zhang, L., Nie, F., Li, X., Chen, Z., Wang, F.: WeGAN: deep image hashing with weighted generative adversarial networks. IEEE Trans. Multimed. 22, 1458–1469 (2019)CrossRef
41.
go back to reference Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)CrossRef Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)CrossRef
42.
go back to reference Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017) Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:​1708.​07747 (2017)
43.
go back to reference Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of ICML, pp. 478–487 (2016) Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of ICML, pp. 478–487 (2016)
44.
go back to reference Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of ICML, vol. 70, pp. 3861–3870. JMLR.org (2017) Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of ICML, vol. 70, pp. 3861–3870. JMLR.org (2017)
45.
go back to reference Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of CVPR, pp. 5147–5156 (2016) Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of CVPR, pp. 5147–5156 (2016)
47.
go back to reference Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description length. In: Proceedings of NIPS, pp. 11–18 (1994) Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description length. In: Proceedings of NIPS, pp. 11–18 (1994)
48.
50.
go back to reference Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings of CVPR (2018) Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings of CVPR (2018)
51.
go back to reference Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef
Metadata
Title
Selective Pseudo-Label Clustering
Authors
Louis Mahon
Thomas Lukasiewicz
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_12

Premium Partner