Skip to main content
Top

2025 | OriginalPaper | Chapter

Selectivity Estimation for Spatial Filters Using Optimizer Feedback: A Machine Learning Perspective

Authors : Nadir Guermoudi, Houcine Matallah, Amin Mesmoudi, Seif-Eddine Benkabou, Allel Hadjali

Published in: Web Information Systems Engineering – WISE 2024

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In query optimization, the precision of selectivity estimates for query predicates is foundational for selecting efficient execution plans. Spatial selectivity estimation, which assesses the count of relevant objects meeting specific spatial criteria, poses a significant challenge due to its multi-dimensional and complex nature. Moreover, it is essential that these estimation methods be both fast and minimize memory usage. In this paper, we leverage optimizer feedback to tackle the challenging task of estimating selectivity for multi-dimensional spatial predicates. We redefine spatial selectivity estimation as a regression problem and investigate the application of three types of machine learning (ML) models: neural networks, tree-based models, and instance-based models to address this challenge. We compare these ML approaches against baseline methods that rely on Minimum Bounding Rectangles (MBRs), encompassing both RTree-based and histogram-based estimations. Through extensive empirical evaluations using a real dataset, our study guides the choice of ML models in accordance with the data collected by the optimizer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
An MBR is the smallest axis-parallel rectangle that fully encompasses the specified spatial area.
 
2
e.g., POLYGON((\(-80.0 35.0, -80.0 45.0, -70.0 45.0, -70.0 35.0, -80.0 35.0\))).
 
Literature
3.
go back to reference An, N., Yang, Z.Y., Sivasubramaniam, A.: Selectivity estimation for spatial joins. In: ICDE, pp. 368–375. IEEE (2001) An, N., Yang, Z.Y., Sivasubramaniam, A.: Selectivity estimation for spatial joins. In: ICDE, pp. 368–375. IEEE (2001)
5.
go back to reference Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Data variety, come as you are in multi-model data warehouses. Inf. Syst. 104, 101734 (2022)CrossRef Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Data variety, come as you are in multi-model data warehouses. Inf. Syst. 104, 101734 (2022)CrossRef
6.
go back to reference Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: SIGKDD, pp. 785–794 (2016) Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: SIGKDD, pp. 785–794 (2016)
7.
go back to reference Cheng, C., Song, X., Zhou, C.: Generic cumulative annular bucket histogram for spatial selectivity estimation of spatial database management system. Int. J. Geogr. Inf. Sci. 27(2), 339–362 (2013)CrossRef Cheng, C., Song, X., Zhou, C.: Generic cumulative annular bucket histogram for spatial selectivity estimation of spatial database management system. Int. J. Geogr. Inf. Sci. 27(2), 339–362 (2013)CrossRef
8.
go back to reference Currim, S., Snodgrass, R.T., Suh, Y.K.: Identifying the root causes of DBMS suboptimality. ACM Trans. Database Syst. 49(1), 1–40 (2024) Currim, S., Snodgrass, R.T., Suh, Y.K.: Identifying the root causes of DBMS suboptimality. ACM Trans. Database Syst. 49(1), 1–40 (2024)
9.
go back to reference Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectivity estimation for range predicates using lightweight models. Proc. VLDB 12(9), 1044–1057 (2019)CrossRef Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectivity estimation for range predicates using lightweight models. Proc. VLDB 12(9), 1044–1057 (2019)CrossRef
10.
go back to reference Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. (CSUR) 30(2), 170–231 (1998)CrossRef Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. (CSUR) 30(2), 170–231 (1998)CrossRef
11.
go back to reference Georgiadis, T., Mamoulis, N.: Raster intervals: an approximation technique for polygon intersection joins. Proc. ACM Manag. Data 1(1), 1–18 (2023)CrossRef Georgiadis, T., Mamoulis, N.: Raster intervals: an approximation technique for polygon intersection joins. Proc. ACM Manag. Data 1(1), 1–18 (2023)CrossRef
12.
go back to reference Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)MathSciNetCrossRef Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)MathSciNetCrossRef
13.
go back to reference Jacox, E.H., Samet, H.: Spatial join techniques. ACM Trans. Database Syst. (TODS) 32(1), 7–es (2007) Jacox, E.H., Samet, H.: Spatial join techniques. ACM Trans. Database Syst. (TODS) 32(1), 7–es (2007)
14.
go back to reference Khelil, A., Mesmoudi, A., Galicia, J., Bellatreche, L., Hacid, M.S., Coquery, E.: Combining graph exploration and fragmentation for scalable RDF query processing. ISF 23(1), 165–183 (2021) Khelil, A., Mesmoudi, A., Galicia, J., Bellatreche, L., Hacid, M.S., Coquery, E.: Combining graph exploration and fragmentation for scalable RDF query processing. ISF 23(1), 165–183 (2021)
15.
go back to reference Kramer, O., Kramer, O.: K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pp. 13–23 (2013) Kramer, O., Kramer, O.: K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pp. 13–23 (2013)
16.
go back to reference Li, S., Ying, M.: Region connection calculus: its models and composition table. Artif. Intell. 145(1–2), 121–146 (2003)MathSciNetCrossRef Li, S., Ying, M.: Region connection calculus: its models and composition table. Artif. Intell. 145(1–2), 121–146 (2003)MathSciNetCrossRef
17.
go back to reference Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)CrossRef Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)CrossRef
19.
go back to reference Meng, Z., Cao, X., Cong, G.: Selectivity estimation for queries containing predicates over set-valued attributes. Proc. ACM Manag. Data 1(4), 1–26 (2023)CrossRef Meng, Z., Cao, X., Cong, G.: Selectivity estimation for queries containing predicates over set-valued attributes. Proc. ACM Manag. Data 1(4), 1–26 (2023)CrossRef
20.
go back to reference Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. SIGMOD Rec. 25(2), 259–270 (1996)CrossRef Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. SIGMOD Rec. 25(2), 259–270 (1996)CrossRef
21.
go back to reference Pavlovic, M., Sidlauskas, D., Heinis, T., Ailamaki, A.: QUASII: query-aware spatial incremental index. In: 21st International Conference on Extending Database Technology (EDBT) (2018) Pavlovic, M., Sidlauskas, D., Heinis, T., Ailamaki, A.: QUASII: query-aware spatial incremental index. In: 21st International Conference on Extending Database Technology (EDBT) (2018)
22.
go back to reference Richly, K., Schlosser, R., Boissier, M.: Joint index, sorting, and compression optimization for memory-efficient spatio-temporal data management. In: ICDE, pp. 1901–1906. IEEE (2021) Richly, K., Schlosser, R., Boissier, M.: Joint index, sorting, and compression optimization for memory-efficient spatio-temporal data management. In: ICDE, pp. 1901–1906. IEEE (2021)
23.
go back to reference Shi, J., Cong, G., Li, X.L.: Learned index benefits: machine learning based index performance estimation. Proc. VLDB Endowment 15(13), 3950–3962 (2022)CrossRef Shi, J., Cong, G., Li, X.L.: Learned index benefits: machine learning based index performance estimation. Proc. VLDB Endowment 15(13), 3950–3962 (2022)CrossRef
24.
go back to reference Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO-DB2’s learning optimizer. In: VLDB. vol. 1, pp. 19–28 (2001) Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO-DB2’s learning optimizer. In: VLDB. vol. 1, pp. 19–28 (2001)
26.
go back to reference Wu, Y.c., Feng, J.w.: Development and application of artificial neural network. Wireless Pers. Commun. 102, 1645–1656 (2018) Wu, Y.c., Feng, J.w.: Development and application of artificial neural network. Wireless Pers. Commun. 102, 1645–1656 (2018)
27.
go back to reference Yousfi, H., Mesmoudi, A., Hadjali, A., Matallah, H., Benkabou, S.E.: SRDF_QDAG: an efficient end-to-end RDF data management when graph exploration meets spatial processing. Comput. Sci. Inf. Syst. 20, 46–46 (2023) Yousfi, H., Mesmoudi, A., Hadjali, A., Matallah, H., Benkabou, S.E.: SRDF_QDAG: an efficient end-to-end RDF data management when graph exploration meets spatial processing. Comput. Sci. Inf. Syst. 20, 46–46 (2023)
28.
go back to reference Zacharatou, E.T., Šidlauskas, D., Tauheed, F., Heinis, T., Ailamaki, A.: Efficient bundled spatial range queries. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 139–148 (2019) Zacharatou, E.T., Šidlauskas, D., Tauheed, F., Heinis, T., Ailamaki, A.: Efficient bundled spatial range queries. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 139–148 (2019)
Metadata
Title
Selectivity Estimation for Spatial Filters Using Optimizer Feedback: A Machine Learning Perspective
Authors
Nadir Guermoudi
Houcine Matallah
Amin Mesmoudi
Seif-Eddine Benkabou
Allel Hadjali
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_8

Premium Partner