Skip to main content
Top

2013 | OriginalPaper | Chapter

3. Selenium Atom-Specific Mutagenesis (SAM) for Crystallography, DNA Nanostructure Design, and Other Applications

Authors : Sibo Jiang, Huiyan Sun, Zhen Huang

Published in: DNA Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since oxygen and selenium are in the same elemental family, the replacement of oxygen in nucleic acids with selenium does not significantly change the local as well as overall structures, which preserves the nucleic acid structures in a predictable manner. Furthermore, the valuable differences in chemical and electronic properties enable various functions and applications, including crystallization, phase determination, and high-resolution structure determination in X-ray crystallography, base-pair high fidelity, nanotechnology, and molecular imaging. This chapter briefly introduces the selenium-modified nucleic acids (SeNA), the selenium atom-specific mutagenesis (SAM), and their potentials in DNA nanotechnology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRef Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRef
2.
go back to reference Beaucage S, Caruthers M (1981) Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862CrossRef Beaucage S, Caruthers M (1981) Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862CrossRef
3.
go back to reference Matteucci MD, Caruthers MH (1981) Synthesis of deoxyoligonucleotides on a polymer support. J Am Chem Soc 103:3185–3191CrossRef Matteucci MD, Caruthers MH (1981) Synthesis of deoxyoligonucleotides on a polymer support. J Am Chem Soc 103:3185–3191CrossRef
4.
go back to reference Uhlmann E, Peyman A (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90:543–584CrossRef Uhlmann E, Peyman A (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90:543–584CrossRef
5.
go back to reference Milligan JF, Matteucci MD, Martin JC (1993) Current concepts in antisense drug design. J Med Chem 36:1923–1937CrossRef Milligan JF, Matteucci MD, Martin JC (1993) Current concepts in antisense drug design. J Med Chem 36:1923–1937CrossRef
6.
go back to reference Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res 25:4429–4443CrossRef Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res 25:4429–4443CrossRef
7.
go back to reference Leumann CJ (2002) DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem 10:841–854CrossRef Leumann CJ (2002) DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem 10:841–854CrossRef
8.
go back to reference Prakash TP, Bhat B (2007) 2′-modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7:641–649CrossRef Prakash TP, Bhat B (2007) 2′-modified oligonucleotides for antisense therapeutics. Curr Top Med Chem 7:641–649CrossRef
9.
go back to reference Weisbrod SH, Marx A (2008) Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun (Camb) 44:5675–5685 Weisbrod SH, Marx A (2008) Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun (Camb) 44:5675–5685
10.
go back to reference McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747CrossRef McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747CrossRef
11.
go back to reference Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329CrossRef Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329CrossRef
12.
go back to reference Manoharan M (2004) RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570–579CrossRef Manoharan M (2004) RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570–579CrossRef
13.
go back to reference Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855CrossRef Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855CrossRef
14.
go back to reference Gaynor JW, Campbell BJ, Cosstick R (2010) RNA interference: a chemist’s perspective. Chem Soc Rev 39:4169–4184CrossRef Gaynor JW, Campbell BJ, Cosstick R (2010) RNA interference: a chemist’s perspective. Chem Soc Rev 39:4169–4184CrossRef
15.
go back to reference Sheng J, Huang Z (2010) Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodivers 7:753–785CrossRef Sheng J, Huang Z (2010) Selenium derivatization of nucleic acids for X-ray crystal-structure and function studies. Chem Biodivers 7:753–785CrossRef
16.
go back to reference Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40:4591–4602CrossRef Lin L, Sheng J, Huang Z (2011) Nucleic acid X-ray crystallography via direct selenium derivatization. Chem Soc Rev 40:4591–4602CrossRef
17.
go back to reference Sun H, Sheng J, Hassan AEA, Jiang S, Gan J, Huang Z (2012) Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Res 40:5171–5179CrossRef Sun H, Sheng J, Hassan AEA, Jiang S, Gan J, Huang Z (2012) Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Res 40:5171–5179CrossRef
18.
go back to reference Hassan AEA, Sheng J, Zhang W, Huang Z (2010) High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 132:2120–2121CrossRef Hassan AEA, Sheng J, Zhang W, Huang Z (2010) High fidelity of base pairing by 2-selenothymidine in DNA. J Am Chem Soc 132:2120–2121CrossRef
19.
go back to reference Pallan PS, Prakash TP, Li F, Eoff RL, Manoharan M, Egli M (2009) A conformational transition in the structure of a 2′-thiomethyl-modified DNA visualized at high resolution. Chem Commun (Camb) 15:2017–2019 Pallan PS, Prakash TP, Li F, Eoff RL, Manoharan M, Egli M (2009) A conformational transition in the structure of a 2′-thiomethyl-modified DNA visualized at high resolution. Chem Commun (Camb) 15:2017–2019
20.
go back to reference Moroder H, Kreutz C, Lang K, Serganov A, Micura R (2006) Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J Am Chem Soc 128:9909–9918CrossRef Moroder H, Kreutz C, Lang K, Serganov A, Micura R (2006) Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J Am Chem Soc 128:9909–9918CrossRef
21.
go back to reference Sheng J, Hassan AEA, Huang Z (2009) Synthesis of the first tellurium-derivatized oligonucleotides for structural and functional studies. Chem Eur J 15:10210–10216CrossRef Sheng J, Hassan AEA, Huang Z (2009) Synthesis of the first tellurium-derivatized oligonucleotides for structural and functional studies. Chem Eur J 15:10210–10216CrossRef
22.
go back to reference Sheng J, Hassan AEA, Zhang W, Zhou J, Xu B, Soares AS, Huang Z (2011) Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization. Nucleic Acids Res 39:3962–3971CrossRef Sheng J, Hassan AEA, Zhang W, Zhou J, Xu B, Soares AS, Huang Z (2011) Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization. Nucleic Acids Res 39:3962–3971CrossRef
23.
go back to reference Jiang S, Sheng J, Huang Z (2011) Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit1.25. Jiang S, Sheng J, Huang Z (2011) Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit1.25.
24.
go back to reference Carrasco N, Ginsburg D, Du Q, Huang Z (2001) Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides Nucleotides Nucleic Acids 20:1723–1734CrossRef Carrasco N, Ginsburg D, Du Q, Huang Z (2001) Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides Nucleotides Nucleic Acids 20:1723–1734CrossRef
25.
go back to reference Du Q, Carrasco N, Teplova M, Wilds CJ, Egli M, Huang Z (2002) Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J Am Chem Soc 124:24–25CrossRef Du Q, Carrasco N, Teplova M, Wilds CJ, Egli M, Huang Z (2002) Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J Am Chem Soc 124:24–25CrossRef
26.
go back to reference Teplova M, Wilds CJ, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M (2002) Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion. Biochimie 84:849–858CrossRef Teplova M, Wilds CJ, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M (2002) Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion. Biochimie 84:849–858CrossRef
27.
go back to reference Jiang J, Sheng J, Carrasco N, Huang Z (2007) Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res 35:477–485CrossRef Jiang J, Sheng J, Carrasco N, Huang Z (2007) Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res 35:477–485CrossRef
28.
go back to reference Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z (2004) Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res 32:1638–1646CrossRef Carrasco N, Buzin Y, Tyson E, Halpert E, Huang Z (2004) Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res 32:1638–1646CrossRef
29.
go back to reference Buzin Y, Carrasco N, Huang Z (2004) Synthesis of selenium-derivatized cytidine and oligonucleotides for X-ray crystallography using MAD. Org Lett 6:1099–1102CrossRef Buzin Y, Carrasco N, Huang Z (2004) Synthesis of selenium-derivatized cytidine and oligonucleotides for X-ray crystallography using MAD. Org Lett 6:1099–1102CrossRef
30.
go back to reference Höbartner C, Micura R (2004) Chemical synthesis of selenium-modified oligoribonucleotides and their enzymatic ligation leading to an U6 SnRNA stem-loop segment. J Am Chem Soc 126:1141–1149CrossRef Höbartner C, Micura R (2004) Chemical synthesis of selenium-modified oligoribonucleotides and their enzymatic ligation leading to an U6 SnRNA stem-loop segment. J Am Chem Soc 126:1141–1149CrossRef
31.
go back to reference Höbartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R (2005) Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J Am Chem Soc 127:12035–12045CrossRef Höbartner C, Rieder R, Kreutz C, Puffer B, Lang K, Polonskaia A, Serganov A, Micura R (2005) Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J Am Chem Soc 127:12035–12045CrossRef
32.
go back to reference Sheng J, Jiang J, Salon J, Huang Z (2007) Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett 9:749–752CrossRef Sheng J, Jiang J, Salon J, Huang Z (2007) Synthesis of a 2′-Se-thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org Lett 9:749–752CrossRef
33.
go back to reference Salon J, Sheng J, Gan J, Huang Z (2010) Synthesis and crystal structure of 2′-se-modified guanosine containing DNA. J Org Chem 75:637–641CrossRef Salon J, Sheng J, Gan J, Huang Z (2010) Synthesis and crystal structure of 2′-se-modified guanosine containing DNA. J Org Chem 75:637–641CrossRef
34.
go back to reference Sheng J, Salon J, Gan J, Huang Z (2010) Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Sci China Chem 53:78–85CrossRef Sheng J, Salon J, Gan J, Huang Z (2010) Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA. Sci China Chem 53:78–85CrossRef
35.
go back to reference Gott JM, Willis MC, Koch TH, Uhlenbeck OC (1991) A specific, UV-induced RNA-protein cross-link using 5-bromouridine-substituted RNA. Biochemistry 30:6290–6295CrossRef Gott JM, Willis MC, Koch TH, Uhlenbeck OC (1991) A specific, UV-induced RNA-protein cross-link using 5-bromouridine-substituted RNA. Biochemistry 30:6290–6295CrossRef
36.
go back to reference Ennifar E, Carpentier P, Ferrer J, Walter P, Dumas P (2002) X-ray-induced debromination of nucleic acids at the BrK absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268CrossRef Ennifar E, Carpentier P, Ferrer J, Walter P, Dumas P (2002) X-ray-induced debromination of nucleic acids at the BrK absorption edge and implications for MAD phasing. Acta Crystallogr D Biol Crystallogr 58:1262–1268CrossRef
37.
go back to reference Reist E, Gueffroy D, Goodman L (1964) Synthesis of 4-thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J Am Chem Soc 86:5658–5663CrossRef Reist E, Gueffroy D, Goodman L (1964) Synthesis of 4-thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J Am Chem Soc 86:5658–5663CrossRef
38.
go back to reference Haeberli P, Berger I, Pallan PS, Egli M (2005) Syntheses of 4′-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4′-thiocytosine. Nucleic Acids Res 33:3965–3975CrossRef Haeberli P, Berger I, Pallan PS, Egli M (2005) Syntheses of 4′-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4′-thiocytosine. Nucleic Acids Res 33:3965–3975CrossRef
39.
go back to reference Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634CrossRef Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634CrossRef
40.
go back to reference Inoue N, Shionoya A, Minakawa N, Kawakami A, Ogawa N, Matsuda A (2007) Amplification of 4′-thioDNA in the presence of 4′-thio-dTTP and 4′-thio-dCTP, and 4′-thioDNA-directed transcription in vitro and in mammalian cells. J Am Chem Soc 129:15424–15425CrossRef Inoue N, Shionoya A, Minakawa N, Kawakami A, Ogawa N, Matsuda A (2007) Amplification of 4′-thioDNA in the presence of 4′-thio-dTTP and 4′-thio-dCTP, and 4′-thioDNA-directed transcription in vitro and in mammalian cells. J Am Chem Soc 129:15424–15425CrossRef
41.
go back to reference Inagaki Y, Minakawa N, Matsuda A (2007) Synthesis of 4′-selenoribonucleosides. Nucleic Acids Symp Ser 51:139–140 Inagaki Y, Minakawa N, Matsuda A (2007) Synthesis of 4′-selenoribonucleosides. Nucleic Acids Symp Ser 51:139–140
42.
go back to reference Naka T, Minakawa N, Abe H, Kaga D, Matsuda A (2000) The stereoselective synthesis of 4′-thioribonucleosides via the Pummerer reaction. J Am Chem Soc 122:7233–7243CrossRef Naka T, Minakawa N, Abe H, Kaga D, Matsuda A (2000) The stereoselective synthesis of 4′-thioribonucleosides via the Pummerer reaction. J Am Chem Soc 122:7233–7243CrossRef
43.
go back to reference Inagaki Y, Minakawa N, Matsuda A (2008) Synthesis and properties of oligonucleotides containing 4′-selenoribonucleosides. Nucleic Acids Symp Ser 52:329–330 Inagaki Y, Minakawa N, Matsuda A (2008) Synthesis and properties of oligonucleotides containing 4′-selenoribonucleosides. Nucleic Acids Symp Ser 52:329–330
44.
go back to reference Jeong LS, Tosh DK, Kim HO, Wang T, Hou X, Yun HS, Kwon Y, Lee SK, Choi J, Zhao LX (2008) First synthesis of 4′-selenonucleosides showing unusual Southern conformation. Org Lett 10:209–212CrossRef Jeong LS, Tosh DK, Kim HO, Wang T, Hou X, Yun HS, Kwon Y, Lee SK, Choi J, Zhao LX (2008) First synthesis of 4′-selenonucleosides showing unusual Southern conformation. Org Lett 10:209–212CrossRef
45.
go back to reference Jayakanthan K, Johnston BD, Pinto BM (2008) Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr Res 343:1790–1800CrossRef Jayakanthan K, Johnston BD, Pinto BM (2008) Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr Res 343:1790–1800CrossRef
46.
go back to reference Watts JK, Johnston BD, Jayakanthan K, Wahba AS, Pinto BM, Damha MJ (2008) Synthesis and biophysical characterization of oligonucleotides containing a 4′-selenonucleotide. J Am Chem Soc 130:8578–8579CrossRef Watts JK, Johnston BD, Jayakanthan K, Wahba AS, Pinto BM, Damha MJ (2008) Synthesis and biophysical characterization of oligonucleotides containing a 4′-selenonucleotide. J Am Chem Soc 130:8578–8579CrossRef
47.
go back to reference Alexander V, Choi WJ, Chun J, Kim HO, Jeon JH, Tosh DK, Lee HW, Chandra G, Choi J, Jeong LS (2010) A new DNA building block, 4′-selenothymidine: synthesis and modification to 4′-seleno-AZT as a potential anti-HIV agent. Org Lett 12:2242–2245CrossRef Alexander V, Choi WJ, Chun J, Kim HO, Jeon JH, Tosh DK, Lee HW, Chandra G, Choi J, Jeong LS (2010) A new DNA building block, 4′-selenothymidine: synthesis and modification to 4′-seleno-AZT as a potential anti-HIV agent. Org Lett 12:2242–2245CrossRef
48.
go back to reference Mori K, Boiziau C, Cazenave C, Matsukura M, Subasinghe C, Cohen JS, Broder S, Toulmé JJ, Stein CA (1989) Phosphoroselenoate oligodeoxynucleotides: synthesis, physico-chemical characterization, anti-sense inhibitory properties and anti-HIV activity. Nucleic Acids Res 17:8207–8219CrossRef Mori K, Boiziau C, Cazenave C, Matsukura M, Subasinghe C, Cohen JS, Broder S, Toulmé JJ, Stein CA (1989) Phosphoroselenoate oligodeoxynucleotides: synthesis, physico-chemical characterization, anti-sense inhibitory properties and anti-HIV activity. Nucleic Acids Res 17:8207–8219CrossRef
49.
go back to reference Wilds CJ, Pattanayek R, Pan C, Wawrzak Z, Egli M (2002) Selenium-assisted nucleic acid crystallography: use of phosphoroselenoates for MAD phasing of a DNA structure. J Am Chem Soc 124:14910–14916CrossRef Wilds CJ, Pattanayek R, Pan C, Wawrzak Z, Egli M (2002) Selenium-assisted nucleic acid crystallography: use of phosphoroselenoates for MAD phasing of a DNA structure. J Am Chem Soc 124:14910–14916CrossRef
50.
go back to reference Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P, Minasov G, Dobler M, Leumann CJ, Eschenmoser A (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J Am Chem Soc 128:10847–10856CrossRef Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P, Minasov G, Dobler M, Leumann CJ, Eschenmoser A (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J Am Chem Soc 128:10847–10856CrossRef
51.
go back to reference Pallan PS, Egli M (2007) Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures. Nat Protoc 2:640–646CrossRef Pallan PS, Egli M (2007) Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures. Nat Protoc 2:640–646CrossRef
52.
go back to reference Baraniak J, Korczynski D, Kaczmarek R, Stec WJ (1999) Tetra-thymidine phosphorofluoridates via tetra-thymidine phosphoro-selenoates: synthesis and stability. Nucleosides Nucleotides 18:2147–2154CrossRef Baraniak J, Korczynski D, Kaczmarek R, Stec WJ (1999) Tetra-thymidine phosphorofluoridates via tetra-thymidine phosphoro-selenoates: synthesis and stability. Nucleosides Nucleotides 18:2147–2154CrossRef
53.
go back to reference Stawinski J, Thelin M (1994) Nucleoside H-phosphonates. 14. Synthesis of nucleoside phosphoroselenoates and phosphorothioselenoates via stereospecific selenization of the corresponding H-phosphonate and H-phosphonothioate diesters with the aid of new selenium-transfer reagent, 3H-1,2-benzothiaselenol-3-one. J Org Chem 59:130–136CrossRef Stawinski J, Thelin M (1994) Nucleoside H-phosphonates. 14. Synthesis of nucleoside phosphoroselenoates and phosphorothioselenoates via stereospecific selenization of the corresponding H-phosphonate and H-phosphonothioate diesters with the aid of new selenium-transfer reagent, 3H-1,2-benzothiaselenol-3-one. J Org Chem 59:130–136CrossRef
54.
go back to reference Bollmark M, Stawinski J (2001) A new selenium-transferring reagent-triphenylphosphine selenide. Chem Commun (Camb) 8:771–772 Bollmark M, Stawinski J (2001) A new selenium-transferring reagent-triphenylphosphine selenide. Chem Commun (Camb) 8:771–772
55.
go back to reference Holloway GA, Pavot C, Scaringe SA, Lu Y, Rauchfuss TB (2002) An organometallic route to oligonucleotides containing phosphoroselenoate. Chembiochem 3:1061–1065CrossRef Holloway GA, Pavot C, Scaringe SA, Lu Y, Rauchfuss TB (2002) An organometallic route to oligonucleotides containing phosphoroselenoate. Chembiochem 3:1061–1065CrossRef
56.
go back to reference Tram K, Wang X, Yan H (2007) Facile synthesis of oligonucleotide phosphoroselenoates. Org Lett 9:5103–5106CrossRef Tram K, Wang X, Yan H (2007) Facile synthesis of oligonucleotide phosphoroselenoates. Org Lett 9:5103–5106CrossRef
57.
go back to reference Guga P, Maciaszek A, Stec WJ (2005) Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function. Org Lett 7:3901–3904CrossRef Guga P, Maciaszek A, Stec WJ (2005) Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function. Org Lett 7:3901–3904CrossRef
58.
go back to reference Caton-Williams J, Huang Z (2008) Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew Chem Int Ed Engl 47(1723–1725) Caton-Williams J, Huang Z (2008) Synthesis and DNA-polymerase incorporation of colored 4-selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew Chem Int Ed Engl 47(1723–1725)
59.
go back to reference Sintim HO, Kool ET (2006) Enhanced base pairing and replication efficiency of thiothymidines, expanded-size variants of thymidine. J Am Chem Soc 128:396–397CrossRef Sintim HO, Kool ET (2006) Enhanced base pairing and replication efficiency of thiothymidines, expanded-size variants of thymidine. J Am Chem Soc 128:396–397CrossRef
60.
go back to reference Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148–153CrossRef Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26:148–153CrossRef
61.
go back to reference Shohda K, Okamoto I, Wada T, Seio K, Sekine M (2000) Synthesis and properties of 2′-O-methyl-2-thiouridine and oligoribonucleotides containing 2′-O-methyl-2-thiouridine. Bioorg Med Chem Lett 10:1795–1798CrossRef Shohda K, Okamoto I, Wada T, Seio K, Sekine M (2000) Synthesis and properties of 2′-O-methyl-2-thiouridine and oligoribonucleotides containing 2′-O-methyl-2-thiouridine. Bioorg Med Chem Lett 10:1795–1798CrossRef
62.
go back to reference Ueda T, Iida Y, Ikeda K, Mizuno Y (1966) Synthesis of 2,4-dithiouridine and 2-thiocytidine. Chem Pharm Bull 14:666–667 Ueda T, Iida Y, Ikeda K, Mizuno Y (1966) Synthesis of 2,4-dithiouridine and 2-thiocytidine. Chem Pharm Bull 14:666–667
63.
go back to reference Vormbrock R, Morawietz R, Gassen HG (1974) Codon-anticodon interaction studies with trinucleoside diphosphates containing 2-thiouridine, 4-thiouridine, 2,4-diethiouridine, or 2-thiocytidine. Biochim Biophys Acta 340:348–358CrossRef Vormbrock R, Morawietz R, Gassen HG (1974) Codon-anticodon interaction studies with trinucleoside diphosphates containing 2-thiouridine, 4-thiouridine, 2,4-diethiouridine, or 2-thiocytidine. Biochim Biophys Acta 340:348–358CrossRef
64.
go back to reference Connolly BA, Newman PC (1989) Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-beta-D(2′-deoxyriboside) and 2-thiothymidine. Nucleic Acids Res 17:4957–4974CrossRef Connolly BA, Newman PC (1989) Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-beta-D(2′-deoxyriboside) and 2-thiothymidine. Nucleic Acids Res 17:4957–4974CrossRef
65.
go back to reference Rajeev KG, Prakash TP, Manoharan M (2003) 2′-modified-2-thiothymidine oligonucleotides. Org Lett 5:3005–3008CrossRef Rajeev KG, Prakash TP, Manoharan M (2003) 2′-modified-2-thiothymidine oligonucleotides. Org Lett 5:3005–3008CrossRef
66.
go back to reference Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25:1272–1280CrossRef Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25:1272–1280CrossRef
67.
go back to reference Houssier C, Degée P, Nicoghosian K, Grosjean H (1988) Effect of uridine dethiolation in the anticodon triplet of tRNA(Glu) on its association with tRNA(Phe). J Biomol Struct Dyn 5:1259–1266CrossRef Houssier C, Degée P, Nicoghosian K, Grosjean H (1988) Effect of uridine dethiolation in the anticodon triplet of tRNA(Glu) on its association with tRNA(Phe). J Biomol Struct Dyn 5:1259–1266CrossRef
68.
go back to reference Agris PF, Söll D, Seno T (1973) Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12:4331–4337CrossRef Agris PF, Söll D, Seno T (1973) Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry 12:4331–4337CrossRef
69.
go back to reference Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF (1999) Single atom modification (O–>S) of tRNA confers ribosome binding. RNA 5:188–194CrossRef Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF (1999) Single atom modification (O–>S) of tRNA confers ribosome binding. RNA 5:188–194CrossRef
70.
go back to reference Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M (2005) Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2′-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Res 33:5297–5307CrossRef Diop-Frimpong B, Prakash TP, Rajeev KG, Manoharan M, Egli M (2005) Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2′-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Res 33:5297–5307CrossRef
71.
go back to reference Coleman R, Siedlecki J (1992) Synthesis of a 4-thio-2‘-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. J Am Chem Soc 114:9229–9230CrossRef Coleman R, Siedlecki J (1992) Synthesis of a 4-thio-2‘-deoxyuridine containing oligonucleotide. Development of the thiocarbonyl group as a linker element. J Am Chem Soc 114:9229–9230CrossRef
72.
go back to reference Christopherson MS, Broom AD (1991) Synthesis of oligonucleotides containing 2‘-deoxy-6-thioguanosine at a predetermined site. Nucleic Acids Res 19:5719–5724CrossRef Christopherson MS, Broom AD (1991) Synthesis of oligonucleotides containing 2‘-deoxy-6-thioguanosine at a predetermined site. Nucleic Acids Res 19:5719–5724CrossRef
73.
go back to reference Rappaport HP (1988) The 6-thioguanine/5-methyl-2-pyrimidinone base pair. Nucleic Acids Res 16:7253–7267CrossRef Rappaport HP (1988) The 6-thioguanine/5-methyl-2-pyrimidinone base pair. Nucleic Acids Res 16:7253–7267CrossRef
74.
go back to reference Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. J Photochem Photobiol B Biol 42:109–124CrossRef Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. J Photochem Photobiol B Biol 42:109–124CrossRef
75.
go back to reference Held HA, Benner SA (2002) Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality. Nucleic Acids Res 30:3857–3869CrossRef Held HA, Benner SA (2002) Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality. Nucleic Acids Res 30:3857–3869CrossRef
76.
go back to reference Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z (2007) Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc 129:4862–4863CrossRef Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z (2007) Oxygen replacement with selenium at the thymidine 4-position for the Se base pairing and crystal structure studies. J Am Chem Soc 129:4862–4863CrossRef
77.
go back to reference Logan G, Igunbor C, Chen G-X, Davis H, Simon A, Salon J, Huang Z (2006) A simple strategy for incorporation, protection, and deprotection of selenium functionality. Synlett 2006:1554–1558CrossRef Logan G, Igunbor C, Chen G-X, Davis H, Simon A, Salon J, Huang Z (2006) A simple strategy for incorporation, protection, and deprotection of ­selenium functionality. Synlett 2006:1554–1558CrossRef
78.
go back to reference Sheng J, Huang Z (2008) Synthesis of a 4-selenothymidine phosphoramidite and incorporation into oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit 1.19 Sheng J, Huang Z (2008) Synthesis of a 4-selenothymidine phosphoramidite and incorporation into oligonucleotides. Curr Protoc Nucleic Acid Chem Chapter 1, Unit 1.19
79.
go back to reference Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646CrossRef Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646CrossRef
80.
go back to reference Wise DS, Townsend LB (1972) Synthesis of the selenopyrimidine nucleosides 2-seleno- and 4-selenouridine. J Heterocycl Chem 9:1461–1462CrossRef Wise DS, Townsend LB (1972) Synthesis of the selenopyrimidine nucleosides 2-seleno- and 4-selenouridine. J Heterocycl Chem 9:1461–1462CrossRef
81.
go back to reference Shiue C-Y, Chu S-H (1975) A facile synthesis of 1-beta-D-arabinofuranosyl-2-seleno- and -4-selenouracil and related compounds. J Org Chem 40:2971–2974CrossRef Shiue C-Y, Chu S-H (1975) A facile synthesis of 1-beta-D-arabinofuranosyl-2-seleno- and -4-selenouracil and related compounds. J Org Chem 40:2971–2974CrossRef
82.
go back to reference Christofferson A, Zhao L, Sun H, Huang Z, Huang N (2011) Theoretical studies of the base pair fidelity of selenium-modified DNA. J Phys Chem B 115:10041–10048CrossRef Christofferson A, Zhao L, Sun H, Huang Z, Huang N (2011) Theoretical studies of the base pair fidelity of selenium-modified DNA. J Phys Chem B 115:10041–10048CrossRef
83.
go back to reference Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34:D145–149CrossRef Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM (2006) MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 34:D145–149CrossRef
84.
go back to reference Ching WM, Alzner-DeWeerd B, Stadtman TC (1985) A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci U S A 82:347–350CrossRef Ching WM, Alzner-DeWeerd B, Stadtman TC (1985) A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci U S A 82:347–350CrossRef
85.
go back to reference Wittwer AJ, Tsai L, Ching WM, Stadtman TC (1984) Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 23:4650–4655CrossRef Wittwer AJ, Tsai L, Ching WM, Stadtman TC (1984) Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry 23:4650–4655CrossRef
86.
go back to reference Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z (2008) Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res 36:7009–7018CrossRef Salon J, Jiang J, Sheng J, Gerlits OO, Huang Z (2008) Derivatization of DNAs with selenium at 6-position of guanine for function and crystal structure studies. Nucleic Acids Res 36:7009–7018CrossRef
87.
go back to reference Zhang W, Sheng J, Hassan AE, Huang Z (2012) Synthesis of 2′-deoxy-5-(methylselenyl)cytidine and Se-DNAs for structural and functional studies. Chem Asian J 7:476–479CrossRef Zhang W, Sheng J, Hassan AE, Huang Z (2012) Synthesis of 2′-deoxy-5-(methylselenyl)cytidine and Se-DNAs for structural and functional studies. Chem Asian J 7:476–479CrossRef
88.
go back to reference Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z (2005) Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5′-(alpha-P-seleno)triphosphate. Angew Chem Int Ed Engl 45:94–97 Carrasco N, Caton-Williams J, Brandt G, Wang S, Huang Z (2005) Efficient enzymatic synthesis of phosphoroselenoate RNA by using adenosine 5′-(alpha-P-seleno)triphosphate. Angew Chem Int Ed Engl 45:94–97
89.
go back to reference Brandt G, Carrasco N, Huang Z (2006) Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X-ray crystallography. Biochemistry 45:8972–8977 Brandt G, Carrasco N, Huang Z (2006) Efficient substrate cleavage catalyzed by hammerhead ribozymes derivatized with selenium for X-ray crystallography. Biochemistry 45:8972–8977
90.
go back to reference Lin L, Caton-Williams J, Kaur M, Patino AM, Sheng J, Punetha J, Huang Z (2011) Facile synthesis of nucleoside 5′-(alpha-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. RNA 17(10):1932–1938 Lin L, Caton-Williams J, Kaur M, Patino AM, Sheng J, Punetha J, Huang Z (2011) Facile synthesis of nucleoside 5′-(alpha-P-seleno)-triphosphates and phosphoroselenoate RNA transcription. RNA 17(10):1932–1938
Metadata
Title
Selenium Atom-Specific Mutagenesis (SAM) for Crystallography, DNA Nanostructure Design, and Other Applications
Authors
Sibo Jiang
Huiyan Sun
Zhen Huang
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36077-0_3

Premium Partners