Skip to main content
Top

2017 | OriginalPaper | Chapter

Self-healing Polymer Composites Based on Graphene and Carbon Nanotubes

Authors : Santwana Pati, Bhanu Pratap Singh, S. R. Dhakate

Published in: Smart Polymer Nanocomposites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Self-healing is a bioinspired concept as nature itself is filled with self-healable composites. For the last 15 years, immense curiosity has been developed in materials that can self-heal for real engineering applications such as aerospace and sporting goods, electronics, and robotics, as this property can improve the longevity of the materials, diminish replacement costs, and improve safety. In materials technology, structural polymer composites are vulnerable to damage, failure, and degradation. Cracks are formed deep within the structure, and hence, it is not easy to detect such cracks and their repair is unfeasible. Self-healing is a microscale bottom-up approach which provides the ability to repair degradation and heal these cracks while still achieving the structural strength requirement. All types of polymers, from thermosetting polymers to thermoplastics, have the potential for self-healing. Self-healing approach can be successfully applied using various approaches such as microencapsulation of the healing agent and vascular impregnation of self-healing materials in tubular networks, but all these extrinsic approaches result in a considerable loss of mechanical strength, while in intrinsic approach, the healing capability is latent in the material itself. The healing is achieved by reversible bonding in the matrix polymer. Carbon nanotubes (CNTs) and graphene have immense hope in this world of smart and multifunctional materials and can be used as nanofillers to obtain nanocomposites of extraordinary mechanical, electrical, thermal, and self-healing properties with the added advantage of lower weight. Their good compatibility with polymer resulting after surface modification of CNTs and graphene, achieving the desirable chemical stability added with outstanding thermal and electrical properties place them as the appropriate and the nascent research topic for self-healing polymer nanocomposites. This chapter initially gives a brief idea about the basic concepts and then examines the different approaches to self-healing techniques along with the various self-healing assessment terms and concepts. This chapter then revolves around the different self-healing nanocomposites based on graphene using various polymers such as polyurethane and epoxy and even hydrogel composites. The characterization of the self-healing systems and analysis of the exact mechanism taking place using different triggering mechanisms is discussed. Then, the various CNT-based self-healing nanocomposites are encompassed. The efficient utilization of CNTs as reinforcement filler and as the healing agent in extrinsic approach is discussed. Then, the utilization of CNTs to fabricate self-healing nanocomposites for a variety of end applications is discussed. The various results on healable multifunctional CNTs and graphene-based polymer nanocomposites are summarized in a tabular form. Finally, the challenges and future research opportunities are highlighted in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Malinskii YM, Prokopenko V, Ivanova N, Kargin V (1970) Investigation of self-healing of cracks in polymers. Polym Mech 6(2):240–244CrossRef Malinskii YM, Prokopenko V, Ivanova N, Kargin V (1970) Investigation of self-healing of cracks in polymers. Polym Mech 6(2):240–244CrossRef
2.
go back to reference Wool RP (1980) Crack healing in semicrystalline polymers, block copolymers and filled elastomers. In: Adhesion and adsorption of polymers. Springer, Berlin, pp 341–362 Wool RP (1980) Crack healing in semicrystalline polymers, block copolymers and filled elastomers. In: Adhesion and adsorption of polymers. Springer, Berlin, pp 341–362
3.
go back to reference Wool R, O’connor K (1981) A theory crack healing in polymers. J Appl Phys 52(10):5953–5963CrossRef Wool R, O’connor K (1981) A theory crack healing in polymers. J Appl Phys 52(10):5953–5963CrossRef
4.
go back to reference Dry C (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3(2):118CrossRef Dry C (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct 3(2):118CrossRef
5.
go back to reference White SR, Sottos N, Geubelle P, Moore J, Kessler MR, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797CrossRef White SR, Sottos N, Geubelle P, Moore J, Kessler MR, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797CrossRef
6.
go back to reference Kessler M (2007) Self-healing: a new paradigm in materials design, proceedings of the institution of mechanical engineers. Part G. J Aerosp Eng 221(4):479–495 Kessler M (2007) Self-healing: a new paradigm in materials design, proceedings of the institution of mechanical engineers. Part G. J Aerosp Eng 221(4):479–495
7.
go back to reference Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef
8.
go back to reference Yuan Y, Yin T, Rong M, Zhang M (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Polym Lett 2(4):238–250 Yuan Y, Yin T, Rong M, Zhang M (2008) Self healing in polymers and polymer composites. Concepts, realization and outlook: a review. Polym Lett 2(4):238–250
9.
go back to reference Wang Z, Yang Y, Burtovyy R, Luzinov I, Urban MW (2014) UV-induced self-repairing polydimethylsiloxane–polyurethane (PDMS–PUR) and polyethylene glycol–polyurethane (PEG–PUR) Cu-catalyzed networks. J Mater Chem A 2(37):15527–15534CrossRef Wang Z, Yang Y, Burtovyy R, Luzinov I, Urban MW (2014) UV-induced self-repairing polydimethylsiloxane–polyurethane (PDMS–PUR) and polyethylene glycol–polyurethane (PEG–PUR) Cu-catalyzed networks. J Mater Chem A 2(37):15527–15534CrossRef
10.
go back to reference Ling J, Rong MZ, Zhang MQ (2012) Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 53(13):2691–2698CrossRef Ling J, Rong MZ, Zhang MQ (2012) Photo-stimulated self-healing polyurethane containing dihydroxyl coumarin derivatives. Polymer 53(13):2691–2698CrossRef
11.
go back to reference Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–337CrossRef Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–337CrossRef
12.
go back to reference Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832CrossRef Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832CrossRef
13.
go back to reference Herbst F, Döhler D, Michael P, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34(3):203–220CrossRef Herbst F, Döhler D, Michael P, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34(3):203–220CrossRef
14.
15.
go back to reference Fall RA (2001) Puncture reversal of polyethylene ionomers-mechanistic studies Fall RA (2001) Puncture reversal of polyethylene ionomers-mechanistic studies
16.
go back to reference Huber A, Hinkley JA (2005) Impression testing of self-healing polymers. NASA Tech Man 213532 Huber A, Hinkley JA (2005) Impression testing of self-healing polymers. NASA Tech Man 213532
17.
go back to reference Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRef Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRef
18.
go back to reference Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRef Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRef
19.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
20.
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872–15884CrossRef
21.
go back to reference Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R, Rajasekharan B, Pamler W, Seidel R, Steinhoegl W, Unger E (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80(6):1141–1151CrossRef Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R, Rajasekharan B, Pamler W, Seidel R, Steinhoegl W, Unger E (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80(6):1141–1151CrossRef
22.
go back to reference Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor—deposited graphene and grain boundaries. Science 340(6136):1073–1076CrossRef Lee G-H, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor—deposited graphene and grain boundaries. Science 340(6136):1073–1076CrossRef
23.
go back to reference Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049CrossRef Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049CrossRef
24.
go back to reference Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1(32):9138–9149CrossRef Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1(32):9138–9149CrossRef
25.
go back to reference Farukh M, Dhawan R, Singh BP, Dhawan S (2015) Sandwich composites of polyurethane reinforced with poly(3,4-ethylene dioxythiophene)-coated multiwalled carbon nanotubes with exceptional electromagnetic interference shielding properties. RSC Adv 5(92):75229–75238CrossRef Farukh M, Dhawan R, Singh BP, Dhawan S (2015) Sandwich composites of polyurethane reinforced with poly(3,4-ethylene dioxythiophene)-coated multiwalled carbon nanotubes with exceptional electromagnetic interference shielding properties. RSC Adv 5(92):75229–75238CrossRef
26.
go back to reference Verma M, Verma P, Dhawan S, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5(118):97349–97358CrossRef Verma M, Verma P, Dhawan S, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5(118):97349–97358CrossRef
27.
go back to reference Mathur R, Pande S, Singh B, Dhami T (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos 29(7):717–727CrossRef Mathur R, Pande S, Singh B, Dhami T (2008) Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym Compos 29(7):717–727CrossRef
28.
go back to reference Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161(15):1522–1526CrossRef Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161(15):1522–1526CrossRef
29.
go back to reference Shahzad F, Yu S, Kumar P, Lee J-W, Kim Y-H, Hong SM, Koo CM (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275CrossRef Shahzad F, Yu S, Kumar P, Lee J-W, Kim Y-H, Hong SM, Koo CM (2015) Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct 133:1267–1275CrossRef
30.
go back to reference Han Y, Wang T, Gao X, Li T, Zhang Q (2016) Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Compos A Appl Sci Manuf 84:336–343CrossRef Han Y, Wang T, Gao X, Li T, Zhang Q (2016) Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Compos A Appl Sci Manuf 84:336–343CrossRef
31.
go back to reference Babal A, Gupta R, Singh B, Singh V, Mathur R, Dhakate S (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by industrial viable twin screw extruder with back flow channel. RSC Adv 4:64649–64658CrossRef Babal A, Gupta R, Singh B, Singh V, Mathur R, Dhakate S (2014) Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by industrial viable twin screw extruder with back flow channel. RSC Adv 4:64649–64658CrossRef
32.
go back to reference Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M (2013) High strain rate behavior of multi-walled carbon nanotubes-polycarbonate composites. Compos B Eng 45(1):417–422CrossRef Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M (2013) High strain rate behavior of multi-walled carbon nanotubes-polycarbonate composites. Compos B Eng 45(1):417–422CrossRef
33.
go back to reference Pande S, Singh BP, Mathur RB (2014) Processing and properties of carbon nanotube/polycarbonate composites, polymer nanotube nanocomposites: synthesis, properties, and applications, 2nd ed. Wiley, New Jersey, pp 333–364 Pande S, Singh BP, Mathur RB (2014) Processing and properties of carbon nanotube/polycarbonate composites, polymer nanotube nanocomposites: synthesis, properties, and applications, 2nd ed. Wiley, New Jersey, pp 333–364
34.
go back to reference Gedler G, Antunes M, Velasco J, Ozisik R (2016) Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater Des 90:906–914 Gedler G, Antunes M, Velasco J, Ozisik R (2016) Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater Des 90:906–914
35.
go back to reference Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos Sci Technol 86:109–116CrossRef Shen B, Zhai W, Tao M, Lu D, Zheng W (2013) Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos Sci Technol 86:109–116CrossRef
36.
go back to reference Jyoti J, Basu S, Singh B, Dhakate S (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65CrossRef Jyoti J, Basu S, Singh B, Dhakate S (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65CrossRef
37.
go back to reference Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260CrossRef Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6(15):12252–12260CrossRef
38.
go back to reference Sharma S, Gupta V, Tandon R, Sachdev V (2016) Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene–MWCNT/ABS nanocomposites. RSC Adv 6(22):18257–18265CrossRef Sharma S, Gupta V, Tandon R, Sachdev V (2016) Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene–MWCNT/ABS nanocomposites. RSC Adv 6(22):18257–18265CrossRef
39.
go back to reference Pande S, Singh B, Mathur R, Dhami T, Saini P, Dhawan S (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4(4):327–334CrossRef Pande S, Singh B, Mathur R, Dhami T, Saini P, Dhawan S (2009) Improved electromagnetic interference shielding properties of MWCNT–PMMA composites using layered structures. Nanoscale Res Lett 4(4):327–334CrossRef
40.
go back to reference Li X, McKenna GB, Miquelard-Garnier G, Guinault A, Sollogoub C, Regnier G, Rozanski A (2014) Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites. Polymer 55(1):248–257CrossRef Li X, McKenna GB, Miquelard-Garnier G, Guinault A, Sollogoub C, Regnier G, Rozanski A (2014) Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites. Polymer 55(1):248–257CrossRef
41.
go back to reference Zeng X, Yang J, Yuan W (2012) Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48(10):1674–1682CrossRef Zeng X, Yang J, Yuan W (2012) Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48(10):1674–1682CrossRef
42.
go back to reference Singh BP, Saini P, Gupta TK, Garg P, Kumar G, Pande I, Pande S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13(12):7065–7074CrossRef Singh BP, Saini P, Gupta TK, Garg P, Kumar G, Pande I, Pande S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13(12):7065–7074CrossRef
43.
go back to reference Fim FC, Basso NR, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637CrossRef Fim FC, Basso NR, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637CrossRef
44.
go back to reference Rajput S, Singh BP, Jyoti J, Dhakate SR (2015) Utilization of polymer wastes using multiwalled carbon nanotubes as a reinforcing filler to make strong value added products. Mater Focus 4(3):213–218CrossRef Rajput S, Singh BP, Jyoti J, Dhakate SR (2015) Utilization of polymer wastes using multiwalled carbon nanotubes as a reinforcing filler to make strong value added products. Mater Focus 4(3):213–218CrossRef
45.
go back to reference Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth R, Tandon R, Mathur RB (2010) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18(6):1397–1407CrossRef Garg P, Singh BP, Kumar G, Gupta T, Pandey I, Seth R, Tandon R, Mathur RB (2010) Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J Polym Res 18(6):1397–1407CrossRef
46.
go back to reference Singh BP, Saini K, Choudhary V, Teotia S, Pande S, Saini P, Mathur RB (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16(1):1–11CrossRef Singh BP, Saini K, Choudhary V, Teotia S, Pande S, Saini P, Mathur RB (2014) Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites. J Nanopart Res 16(1):1–11CrossRef
47.
go back to reference Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef
48.
go back to reference Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25(4):575–585CrossRef Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25(4):575–585CrossRef
49.
go back to reference Mathur RB, Singh BP, Dhami T, Kalra Y, Lal N, Rao R, Rao AM (2010) Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites. Polym Compos 31(2):321–327 Mathur RB, Singh BP, Dhami T, Kalra Y, Lal N, Rao R, Rao AM (2010) Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites. Polym Compos 31(2):321–327
50.
go back to reference Teotia S, Singh BP, Elizabeth I, Singh VN, Ravikumar R, Singh AP, Gopukumar S, Dhawan S, Srivastava A, Mathur R (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4(63):33168–33174CrossRef Teotia S, Singh BP, Elizabeth I, Singh VN, Ravikumar R, Singh AP, Gopukumar S, Dhawan S, Srivastava A, Mathur R (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4(63):33168–33174CrossRef
51.
go back to reference Liu Y-Z, Li Y-F, Yang Y-G, Wen Y-F, Wang M-Z (2013) Preparation and properties of graphene oxide–carbon fiber/phenolic resin composites. Carbon 52:624CrossRef Liu Y-Z, Li Y-F, Yang Y-G, Wen Y-F, Wang M-Z (2013) Preparation and properties of graphene oxide–carbon fiber/phenolic resin composites. Carbon 52:624CrossRef
52.
go back to reference Özçelik VO, Gurel HH, Ciraci S (2013) Self-healing of vacancy defects in single-layer graphene and silicene. Phys Rev B 88(4):045440CrossRef Özçelik VO, Gurel HH, Ciraci S (2013) Self-healing of vacancy defects in single-layer graphene and silicene. Phys Rev B 88(4):045440CrossRef
53.
go back to reference Botari T, Paupitz R, da Silva Autreto PA, Galvao DS (2016) Graphene healing mechanisms: a theoretical investigation. Carbon 99:302–309CrossRef Botari T, Paupitz R, da Silva Autreto PA, Galvao DS (2016) Graphene healing mechanisms: a theoretical investigation. Carbon 99:302–309CrossRef
54.
go back to reference Bangert U, Zan R, Ramasse Q, Novoselov K (2012) Graphene re-knits its holes. Nano Letters 12(8):3936–3940 Bangert U, Zan R, Ramasse Q, Novoselov K (2012) Graphene re-knits its holes. Nano Letters 12(8):3936–3940
55.
go back to reference Zan R, Ramasse QM, Bangert U, Novoselov KS (2012) Graphene reknits its holes. Nano Lett 12(8):3936–3940CrossRef Zan R, Ramasse QM, Bangert U, Novoselov KS (2012) Graphene reknits its holes. Nano Lett 12(8):3936–3940CrossRef
56.
go back to reference Zhu J, Shi D (2013) A possible self-healing mechanism in damaged graphene by heat treatment. Comput Mater Sci 68:391–395CrossRef Zhu J, Shi D (2013) A possible self-healing mechanism in damaged graphene by heat treatment. Comput Mater Sci 68:391–395CrossRef
57.
go back to reference Xu Z-C, Zhong W-R (2014) Probability of self-healing in damaged graphene bombarded by fullerene. Appl Phys Lett 104(26):261907CrossRef Xu Z-C, Zhong W-R (2014) Probability of self-healing in damaged graphene bombarded by fullerene. Appl Phys Lett 104(26):261907CrossRef
58.
59.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
60.
go back to reference Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927CrossRef Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927CrossRef
61.
go back to reference He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772CrossRef He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3(6):1764–1772CrossRef
62.
go back to reference Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef
63.
go back to reference Fan Y, Yang H, Li M, Zou G (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115(2):696–698CrossRef Fan Y, Yang H, Li M, Zou G (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115(2):696–698CrossRef
64.
go back to reference Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24(45):5979–6004CrossRef Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24(45):5979–6004CrossRef
65.
go back to reference Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y, Ma Y, Chen Y (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228CrossRef Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y, Ma Y, Chen Y (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228CrossRef
66.
go back to reference Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM (2013) Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J 49(12):3889–3896CrossRef Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM (2013) Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J 49(12):3889–3896CrossRef
67.
go back to reference Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132(34):12051–12058CrossRef Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J Am Chem Soc 132(34):12051–12058CrossRef
68.
go back to reference Jastrzebski ZD (1977) The nature and properties of engineering materials. Wiley, New Jersey Jastrzebski ZD (1977) The nature and properties of engineering materials. Wiley, New Jersey
69.
go back to reference Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670CrossRef Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670CrossRef
70.
go back to reference Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39(3):2146–2154CrossRef Thakur S, Karak N (2015) A tough, smart elastomeric bio-based hyperbranched polyurethane nanocomposite. New J Chem 39(3):2146–2154CrossRef
71.
go back to reference Chen Y, Gao P, Zhu C, Wang R, Wang L, Cao M, Fang X (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys 106(5):054303CrossRef Chen Y, Gao P, Zhu C, Wang R, Wang L, Cao M, Fang X (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J Appl Phys 106(5):054303CrossRef
72.
go back to reference Thakur S, Karak N (2015) Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2–reduced graphene oxide nanohybrid. J Mater Chem A 3(23):12334–12342CrossRef Thakur S, Karak N (2015) Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2–reduced graphene oxide nanohybrid. J Mater Chem A 3(23):12334–12342CrossRef
73.
go back to reference Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959CrossRef Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114(30):12955–12959CrossRef
74.
go back to reference Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902CrossRef Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902CrossRef
76.
go back to reference Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67(2):201–212CrossRef Yin T, Rong MZ, Zhang MQ, Yang GC (2007) Self-healing epoxy composites—preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol 67(2):201–212CrossRef
77.
go back to reference Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Self-healing epoxy based on cationic chain polymerization. Polymer 50(13):2967–2975CrossRef Xiao DS, Yuan YC, Rong MZ, Zhang MQ (2009) Self-healing epoxy based on cationic chain polymerization. Polymer 50(13):2967–2975CrossRef
78.
go back to reference Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514CrossRef Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514CrossRef
79.
go back to reference Wang C, Liu N, Allen R, Tok JBH, Wu Y, Zhang F, Chen Y, Bao Z (2013) A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25(40):5785–5790CrossRef Wang C, Liu N, Allen R, Tok JBH, Wu Y, Zhang F, Chen Y, Bao Z (2013) A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25(40):5785–5790CrossRef
80.
go back to reference Dong J, Ding J, Weng J, Dai L (2013) Graphene enhances the shape memory of poly(acrylamide-co-acrylic acid) grafted on graphene. Macromol Rapid Commun 34(8):659–664CrossRef Dong J, Ding J, Weng J, Dai L (2013) Graphene enhances the shape memory of poly(acrylamide-co-acrylic acid) grafted on graphene. Macromol Rapid Commun 34(8):659–664CrossRef
81.
go back to reference Zhu Y, Yao C, Ren J, Liu C, Ge L (2015) Graphene improved electrochemical property in self-healing multilayer polyelectrolyte film. Colloids Surf A 465:26–31CrossRef Zhu Y, Yao C, Ren J, Liu C, Ge L (2015) Graphene improved electrochemical property in self-healing multilayer polyelectrolyte film. Colloids Surf A 465:26–31CrossRef
82.
go back to reference Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360CrossRef
83.
go back to reference Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRef Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRef
84.
go back to reference Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364–2371CrossRef Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364–2371CrossRef
85.
go back to reference Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interf 5(17):8633–8640CrossRef Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interf 5(17):8633–8640CrossRef
86.
go back to reference Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996CrossRef Hou C, Duan Y, Zhang Q, Wang H, Li Y (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996CrossRef
87.
go back to reference Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362CrossRef Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362CrossRef
88.
go back to reference Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRef Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRef
89.
go back to reference Zhang E, Wang T, Zhao L, Sun W, Liu X, Tong Z (2014) Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Appl Mater Interf 6(24):22855–22861CrossRef Zhang E, Wang T, Zhao L, Sun W, Liu X, Tong Z (2014) Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Appl Mater Interf 6(24):22855–22861CrossRef
90.
go back to reference Li J, Zhang G, Deng L, Zhao S, Gao Y, Jiang K, Sun R, Wong C (2014) In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J Mater Chem A 2(48):20642–20649CrossRef Li J, Zhang G, Deng L, Zhao S, Gao Y, Jiang K, Sun R, Wong C (2014) In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J Mater Chem A 2(48):20642–20649CrossRef
91.
go back to reference Cui W, Ji J, Cai Y-F, Li H, Ran R, Robust (2015) Anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J Mater Chem A 3(33):17445–17458CrossRef Cui W, Ji J, Cai Y-F, Li H, Ran R, Robust (2015) Anti-fatigue, and self-healing graphene oxide/hydrophobically associated composite hydrogels and their use as recyclable adsorbents for dye wastewater treatment. J Mater Chem A 3(33):17445–17458CrossRef
92.
go back to reference Lanzara G, Yoon Y, Liu H, Peng S, Lee W (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology 20(33):335704CrossRef Lanzara G, Yoon Y, Liu H, Peng S, Lee W (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology 20(33):335704CrossRef
93.
go back to reference Sinha-Ray S, Pelot D, Zhou Z, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146CrossRef Sinha-Ray S, Pelot D, Zhou Z, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22(18):9138–9146CrossRef
94.
go back to reference Bailey BM, Leterrier Y, Garcia S, Van Der Zwaag S, Michaud V (2015) Electrically conductive self-healing polymer composite coatings. Prog Org Coat 85:189–198CrossRef Bailey BM, Leterrier Y, Garcia S, Van Der Zwaag S, Michaud V (2015) Electrically conductive self-healing polymer composite coatings. Prog Org Coat 85:189–198CrossRef
95.
go back to reference Ahangari MG, Fereidoon A (2015) Micromechanical properties and morphologies of self-healing epoxy nanocomposites with microencapsulated healing agent. Mater Chem Phys 151:112–118CrossRef Ahangari MG, Fereidoon A (2015) Micromechanical properties and morphologies of self-healing epoxy nanocomposites with microencapsulated healing agent. Mater Chem Phys 151:112–118CrossRef
96.
go back to reference Aissa B, Haddad E, Jamroz W, Hassani S, Farahani R, Merle P, Therriault D (2012) Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications. Smart Mater Struct 21(10):105028CrossRef Aissa B, Haddad E, Jamroz W, Hassani S, Farahani R, Merle P, Therriault D (2012) Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications. Smart Mater Struct 21(10):105028CrossRef
97.
go back to reference Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S (2015) Conductive elastomers with autonomic self-healing properties. Angew Chem 127(41):12295–12301CrossRef Guo K, Zhang DL, Zhang XM, Zhang J, Ding LS, Li BJ, Zhang S (2015) Conductive elastomers with autonomic self-healing properties. Angew Chem 127(41):12295–12301CrossRef
98.
go back to reference Yang W, Song J, Wu X, Wang X, Liu W, Qiu L, Hao W (2015) High-efficiency self-healing conductive composites from HPAMAM and CNTs. J Mater Chem A 3(23):12154–12158CrossRef Yang W, Song J, Wu X, Wang X, Liu W, Qiu L, Hao W (2015) High-efficiency self-healing conductive composites from HPAMAM and CNTs. J Mater Chem A 3(23):12154–12158CrossRef
99.
go back to reference Wang S, Xuan S, Jiang W, Jiang W, Yan L, Mao Y, Liu M, Gong X (2015) Rate-dependent and self-healing conductive shear stiffening nanocomposite: a novel safe-guarding material with force sensitivity. J Mater Chem A 3(39):19790–19799CrossRef Wang S, Xuan S, Jiang W, Jiang W, Yan L, Mao Y, Liu M, Gong X (2015) Rate-dependent and self-healing conductive shear stiffening nanocomposite: a novel safe-guarding material with force sensitivity. J Mater Chem A 3(39):19790–19799CrossRef
100.
go back to reference Bai S, Sun C, Yan H, Sun X, Zhang H, Luo L, Lei X, Wan P, Chen X (2015) Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43):5807–5813CrossRef Bai S, Sun C, Yan H, Sun X, Zhang H, Luo L, Lei X, Wan P, Chen X (2015) Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43):5807–5813CrossRef
101.
go back to reference Hsu S-H, Wu M-C, Chen S, Chuang C-M, Lin S-H, Su W-F (2012) Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50(3):896–905CrossRef Hsu S-H, Wu M-C, Chen S, Chuang C-M, Lin S-H, Su W-F (2012) Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50(3):896–905CrossRef
102.
go back to reference Li J (2010) Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2:112–118CrossRef Li J (2010) Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2:112–118CrossRef
103.
go back to reference Du R, Wu J, Chen L, Huang H, Zhang X, Zhang J (2014) Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small 10(7):1387–1393CrossRef Du R, Wu J, Chen L, Huang H, Zhang X, Zhang J (2014) Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels. Small 10(7):1387–1393CrossRef
104.
go back to reference Li B, Zhang J (2015) Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon 93:648–658CrossRef Li B, Zhang J (2015) Polysiloxane/multiwalled carbon nanotubes nanocomposites and their applications as ultrastable, healable and superhydrophobic coatings. Carbon 93:648–658CrossRef
105.
go back to reference Li G, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68(15):3337–3343CrossRef Li G, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68(15):3337–3343CrossRef
106.
go back to reference Roy S, Baral A, Banerjee A (2013) An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. Chem A Eur J 19(44):14950–14957CrossRef Roy S, Baral A, Banerjee A (2013) An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. Chem A Eur J 19(44):14950–14957CrossRef
Metadata
Title
Self-healing Polymer Composites Based on Graphene and Carbon Nanotubes
Authors
Santwana Pati
Bhanu Pratap Singh
S. R. Dhakate
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50424-7_5

Premium Partners