Skip to main content
Top
Published in: Journal of Materials Science 16/2014

01-08-2014

Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films

Authors: Francesco Ruffino, M. G. Grimaldi

Published in: Journal of Materials Science | Issue 16/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work we report on the formation of self-organized and multimodal sized patterned arrays of Au and Ag nanoparticles on SiO2 surface exploiting the thickness-dependent solid-state dewetting properties of template-confined deposited nanoscale films. In this approach, the Au and Ag surface pattern order, on the SiO2 substrate, is established by the template confined deposition on a micrometric scale, while the solid-state dewetting phenomenon is induced by thermal processes (below the Au and Ag melting temperature). The deposited films have not an uniform thickness. They, instead, present a controlled thickness due to shadowing mask effects during depositions. Such an inhomogeneity can be further controlled by changing the deposition angle. After the dewetting process, scanning electron microscopy analyses allowed us to correlate the mean diameter 〈D〉 and spacing 〈s〉 of the formed nanoparticles by the thickness h of the deposited films. Despite the dewetting process of the Au and Ag films occurs in the solid state, relations describing the evolution of 〈D〉 and 〈s〉 with 〈h〉 typical of the linear hydrodynamic spinodal dewetting process of liquid films, 〈D〉 ∝ h 5/3 and 〈s〉 ∝ h 2, were verified within a 20 % experimental error. As a consequence we call this process “pseudo-spinodal dewetting”.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295CrossRef Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295CrossRef
2.
go back to reference Mahmoud MA, Saira F, El-Sayed MA (2010) Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. Nano Lett 10:3764–3769CrossRef Mahmoud MA, Saira F, El-Sayed MA (2010) Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. Nano Lett 10:3764–3769CrossRef
3.
go back to reference Zeng J, Zhang Q, Chen J, Xia Y (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35CrossRef Zeng J, Zhang Q, Chen J, Xia Y (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35CrossRef
4.
go back to reference Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew Chem Int Ed 49:5232–5241CrossRef Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew Chem Int Ed 49:5232–5241CrossRef
5.
go back to reference Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599CrossRef Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599CrossRef
6.
go back to reference Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37CrossRef Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37CrossRef
7.
go back to reference Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964CrossRef Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964CrossRef
8.
go back to reference Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRef Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRef
9.
go back to reference Hong AJ, Liu CC, Wang Y, Kim J, Xiu FX, Ji SX, Zou J, Nealey PF, Wang KL (2010) Metal nanodot memory by self-assembled block copolymer lift-off. Nano Lett 10:224–229CrossRef Hong AJ, Liu CC, Wang Y, Kim J, Xiu FX, Ji SX, Zou J, Nealey PF, Wang KL (2010) Metal nanodot memory by self-assembled block copolymer lift-off. Nano Lett 10:224–229CrossRef
10.
go back to reference Conoci S, Petralia S, Samori P, Raymo FM, Bella SD, Sortino S (2006) Optically transparent, ultrathin Pt films as versatile metal substrates for molecular optoelectronics. Adv Funct Mater 16:1425–1432CrossRef Conoci S, Petralia S, Samori P, Raymo FM, Bella SD, Sortino S (2006) Optically transparent, ultrathin Pt films as versatile metal substrates for molecular optoelectronics. Adv Funct Mater 16:1425–1432CrossRef
11.
go back to reference Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRef Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRef
12.
go back to reference Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York
13.
go back to reference Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201CrossRef Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201CrossRef
14.
go back to reference Qu D, Liu F, Yu J, Xie W, Xu Q, Li X, Huang Y (2011) Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:113119CrossRef Qu D, Liu F, Yu J, Xie W, Xu Q, Li X, Huang Y (2011) Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:113119CrossRef
15.
go back to reference Yu DP, Xing YJ, Hang QL, Yan HF, Xu J, Xi ZH, Feng SQ (2001) Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Phys E 9:305–309CrossRef Yu DP, Xing YJ, Hang QL, Yan HF, Xu J, Xi ZH, Feng SQ (2001) Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Phys E 9:305–309CrossRef
16.
go back to reference Chowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317CrossRef Chowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317CrossRef
17.
go back to reference Yoon YJ, Bae JC, Baik HK, Cho SJ, Lee SJ, Song KM, Myung NS (2002) Nucleation and growth control of carbon nanotubes in CVD process. Phys B 323:318–320CrossRef Yoon YJ, Bae JC, Baik HK, Cho SJ, Lee SJ, Song KM, Myung NS (2002) Nucleation and growth control of carbon nanotubes in CVD process. Phys B 323:318–320CrossRef
18.
go back to reference Kwon JY, Yoon TS, Kim KB, Min SH (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278CrossRef Kwon JY, Yoon TS, Kim KB, Min SH (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278CrossRef
19.
go back to reference Liu H, Cheng G, Zheng R, Zhao Y, Liang C (2008) Effects of the restructuring of Fe catalyst films on chemical vapor deposition of carbon nanotubes. Surf Coat Technol 202:3157–3163CrossRef Liu H, Cheng G, Zheng R, Zhao Y, Liang C (2008) Effects of the restructuring of Fe catalyst films on chemical vapor deposition of carbon nanotubes. Surf Coat Technol 202:3157–3163CrossRef
20.
go back to reference Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2011) Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res Lett 6:112CrossRef Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2011) Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res Lett 6:112CrossRef
21.
go back to reference Ohring M (1992) The materials science of thin films. Academic Press, New York Ohring M (1992) The materials science of thin films. Academic Press, New York
22.
go back to reference Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRef Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRef
23.
go back to reference Tesler AB, Maoz BM, Feldman Y, Vaskevich A, Rubinstein I (2013) Solid-state thermal dewetting of just-percolated gold films evaporated on glass: development of the morphology and optical properties. J Phys Chem C 117:11337–11346CrossRef Tesler AB, Maoz BM, Feldman Y, Vaskevich A, Rubinstein I (2013) Solid-state thermal dewetting of just-percolated gold films evaporated on glass: development of the morphology and optical properties. J Phys Chem C 117:11337–11346CrossRef
24.
go back to reference Luber EJ, Olsen BC, Ophus C, Mitlin D (2010) Solid-state dewetting mechanisms of ultrathin Ni films revealed by combining in situ time resolved differential reflectometry monitoring and atomic force microscopy. Phys Rev B 82:85407CrossRef Luber EJ, Olsen BC, Ophus C, Mitlin D (2010) Solid-state dewetting mechanisms of ultrathin Ni films revealed by combining in situ time resolved differential reflectometry monitoring and atomic force microscopy. Phys Rev B 82:85407CrossRef
25.
go back to reference Müller CM, Spolenak R (2013) Dewetting of Au and AuPt alloy films: a dewetting zone model. J Appl Phys 113:094301CrossRef Müller CM, Spolenak R (2013) Dewetting of Au and AuPt alloy films: a dewetting zone model. J Appl Phys 113:094301CrossRef
26.
go back to reference Giermann AL, Thompson CV (2005) Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl Phys Lett 86:121903CrossRef Giermann AL, Thompson CV (2005) Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl Phys Lett 86:121903CrossRef
27.
go back to reference Oh YJ, Ross CA, Jung YS, Wang Y, Thompson CV (2009) Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5:860–865CrossRef Oh YJ, Ross CA, Jung YS, Wang Y, Thompson CV (2009) Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5:860–865CrossRef
28.
go back to reference Kim D, Giermann AL, Thompson CV (2009) Solid-state dewetting of patterned thin films. Appl Phys Lett 95:251903CrossRef Kim D, Giermann AL, Thompson CV (2009) Solid-state dewetting of patterned thin films. Appl Phys Lett 95:251903CrossRef
29.
go back to reference Ye J, Thompson CV (2010) Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films. Phys Rev B 82:193408CrossRef Ye J, Thompson CV (2010) Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films. Phys Rev B 82:193408CrossRef
30.
go back to reference Ye J, Thompson CV (2011) Templated solid-state dewetting to controllably produce complex patterns. Adv Mater 23:1567–1571CrossRef Ye J, Thompson CV (2011) Templated solid-state dewetting to controllably produce complex patterns. Adv Mater 23:1567–1571CrossRef
31.
go back to reference Jiran E, Thompson CV (1990) Capillary instabilities in thin films. J Electr Mater 19:1153–1160CrossRef Jiran E, Thompson CV (1990) Capillary instabilities in thin films. J Electr Mater 19:1153–1160CrossRef
32.
go back to reference Jiran E, Thompson CV (1992) Capillary instabilities in thin, continuous films. Thin Solid Films 208:23–28CrossRef Jiran E, Thompson CV (1992) Capillary instabilities in thin, continuous films. Thin Solid Films 208:23–28CrossRef
33.
go back to reference Wang D, Ji R, Schaaf P (2011) Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates. Beilstein J Nanotechnol 2:318–326CrossRef Wang D, Ji R, Schaaf P (2011) Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates. Beilstein J Nanotechnol 2:318–326CrossRef
34.
go back to reference Wang D, Schaaf P (2012) Thermal dewetting of thin Au films deposited onto line-patterned substrates. J Mater Sci 47:1605–1608CrossRef Wang D, Schaaf P (2012) Thermal dewetting of thin Au films deposited onto line-patterned substrates. J Mater Sci 47:1605–1608CrossRef
35.
go back to reference Ruffino F, Grimaldi MG (2013) Template-confined dewetting of Au and Ag nanoscale films on mica substrate. Appl Surf Sci 270:697–706CrossRef Ruffino F, Grimaldi MG (2013) Template-confined dewetting of Au and Ag nanoscale films on mica substrate. Appl Surf Sci 270:697–706CrossRef
36.
go back to reference Ruffino F, Grimaldi MG (2013) Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films. Thin Solid Films 536:99–110CrossRef Ruffino F, Grimaldi MG (2013) Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films. Thin Solid Films 536:99–110CrossRef
37.
go back to reference de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863CrossRef de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863CrossRef
38.
go back to reference Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28:261–302CrossRef Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28:261–302CrossRef
39.
go back to reference Müller-Buschbaum P (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J Phys Condens Matter 15:R1549–R1582CrossRef Müller-Buschbaum P (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J Phys Condens Matter 15:R1549–R1582CrossRef
40.
go back to reference Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718CrossRef Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718CrossRef
41.
go back to reference Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRef Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRef
42.
go back to reference Choe SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87CrossRef Choe SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87CrossRef
43.
go back to reference Joo J, Chow BY, Jacobson JM (2006) Nanoscale patterning on insulating substrates by critical energy electron beam lithography. Nano Lett 6:2021–2025CrossRef Joo J, Chow BY, Jacobson JM (2006) Nanoscale patterning on insulating substrates by critical energy electron beam lithography. Nano Lett 6:2021–2025CrossRef
44.
go back to reference Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223CrossRef Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223CrossRef
45.
go back to reference Choi Y, Hong S, Lee LP (2009) Shadow overlap ion-beam lithography for nanoarchitectures. Nano Lett 9:3726–3731CrossRef Choi Y, Hong S, Lee LP (2009) Shadow overlap ion-beam lithography for nanoarchitectures. Nano Lett 9:3726–3731CrossRef
46.
go back to reference Pazos-Perez N, Ni W, Schweikart A, Alvarez-Puebla RA, Fery A, Liz-Marzan LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178CrossRef Pazos-Perez N, Ni W, Schweikart A, Alvarez-Puebla RA, Fery A, Liz-Marzan LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178CrossRef
47.
go back to reference Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R (2007) Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys Rev B 75:235439CrossRef Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R (2007) Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys Rev B 75:235439CrossRef
49.
go back to reference Burger GJ, Smulders EJT, Berenschot JW, Lammerink TSJ, Fluitman JHJ, Imai S (1996) High-resolution shadow-mask patterning in deep holes and its application to an electrical wafer feed-through. Sens Actuators 54:669–673CrossRef Burger GJ, Smulders EJT, Berenschot JW, Lammerink TSJ, Fluitman JHJ, Imai S (1996) High-resolution shadow-mask patterning in deep holes and its application to an electrical wafer feed-through. Sens Actuators 54:669–673CrossRef
50.
go back to reference Egger S, Ilie A, Fu Y, Chongsathien J, Kang DY, Welland ME (2005) Dynamic shadow mask technique: a universal tool for nanoscience. Nano Lett 5:15–20CrossRef Egger S, Ilie A, Fu Y, Chongsathien J, Kang DY, Welland ME (2005) Dynamic shadow mask technique: a universal tool for nanoscience. Nano Lett 5:15–20CrossRef
51.
go back to reference Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16:1115–1122CrossRef Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16:1115–1122CrossRef
52.
go back to reference Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev Sci Instr 75:1089–1097CrossRef Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev Sci Instr 75:1089–1097CrossRef
53.
go back to reference Ruffino F, Canino A, Grimaldi MG, Giannazzo F, Bongiorno C, Roccaforte F, Raineri V (2007) Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J Appl Phys 101:064306CrossRef Ruffino F, Canino A, Grimaldi MG, Giannazzo F, Bongiorno C, Roccaforte F, Raineri V (2007) Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J Appl Phys 101:064306CrossRef
54.
go back to reference Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported silver clusters during growth. Surf Sci 432:257–264CrossRef Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported silver clusters during growth. Surf Sci 432:257–264CrossRef
56.
go back to reference Mullins WW (1959) Flattening of a nearly plane solid surface due to capillarity. J Appl Phys 30:77–83CrossRef Mullins WW (1959) Flattening of a nearly plane solid surface due to capillarity. J Appl Phys 30:77–83CrossRef
57.
go back to reference Bollinne C, Cuenot S, Nysten B, Jonas AM (2003) Spinodal-like dewetting of thermodynamically-stable thin polymer films. Eur Phys J E 12:389–396CrossRef Bollinne C, Cuenot S, Nysten B, Jonas AM (2003) Spinodal-like dewetting of thermodynamically-stable thin polymer films. Eur Phys J E 12:389–396CrossRef
58.
go back to reference Wensink KD, Jérôme B (2002) Dewetting induced by density fluctuations. Langmuir 18:413–416CrossRef Wensink KD, Jérôme B (2002) Dewetting induced by density fluctuations. Langmuir 18:413–416CrossRef
59.
go back to reference Sharma A, Mittal J, Verma R (2002) Instability and dewetting of thin films induced by density variations. Langmuir 18:10213–10220CrossRef Sharma A, Mittal J, Verma R (2002) Instability and dewetting of thin films induced by density variations. Langmuir 18:10213–10220CrossRef
60.
go back to reference Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology-sputtering of compound materials. William Andrew Publishing, Norwich Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology-sputtering of compound materials. William Andrew Publishing, Norwich
Metadata
Title
Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films
Authors
Francesco Ruffino
M. G. Grimaldi
Publication date
01-08-2014
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2014
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8290-4

Other articles of this Issue 16/2014

Journal of Materials Science 16/2014 Go to the issue

Premium Partners