Skip to main content
Top

2020 | OriginalPaper | Chapter

3. Self-responsive Nanomaterials for Flexible Supercapacitors

Authors : Daolan Liu, Yueyu Tong, Lei Wen, Ji Liang

Published in: Responsive Nanomaterials for Sustainable Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The worldwide demand for green and renewable energy resources as well as the development of electronic devices has greatly boosted the improvement of energy storage systems. As one of the major types of energy storage devices, supercapacitors, with ultrahigh power densities, long-term cycling lives, and rapid charge and discharge capabilities, have been extensively investigated at the current stage, especially for those flexible or wearable electronic devices, which could be integrated into a smart system. In this chapter, the basic structures, the energy storage mechanisms, the categorization, and the characteristics of supercapacitors are comprehensively discussed. This chapter mainly focuses on different major components of flexible supercapacitors, ranging from the flexible electrode structure, the flexible substrates, and the improved electrolyte, to the construction of self-responsive flexible devices. Meanwhile, the emerging flexible integrated systems with these devices have also been illustrated, such as the energy sensor integrated systems and the energy collection-storage-sensing systems. Furthermore, the future trend of flexible supercapacitors based on future demands will be lastly discussed, focusing on the feasible and efficient strategies for designing novel and high-performance supercapacitors in future research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Nowotny, J. Dodson, S. Fiechter, T.M. Gür, B. Kennedy, W. Macyk, T. Bak, W. Sigmund, M. Yamawaki, K.A. Rahman, Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)CrossRef J. Nowotny, J. Dodson, S. Fiechter, T.M. Gür, B. Kennedy, W. Macyk, T. Bak, W. Sigmund, M. Yamawaki, K.A. Rahman, Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)CrossRef
2.
go back to reference X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff, L. Wang, J. Liang, Z. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019)CrossRef X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff, L. Wang, J. Liang, Z. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019)CrossRef
3.
go back to reference D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2(9), 743–765 (2019)CrossRef D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2(9), 743–765 (2019)CrossRef
4.
go back to reference S.-L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013)CrossRef S.-L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013)CrossRef
5.
go back to reference K. Chen, D. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)CrossRef K. Chen, D. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)CrossRef
6.
go back to reference P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology, pp. 320–329 P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology, pp. 320–329
7.
go back to reference L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018)CrossRef L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018)CrossRef
8.
go back to reference T. Yang, J. Liang, I. Sultana, M.M. Rahman, M.J. Monteiro, Y. Chen, Z. Shao, S.R.P. Silva, J. Liu, Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 6(18), 8280–8288 (2018)CrossRef T. Yang, J. Liang, I. Sultana, M.M. Rahman, M.J. Monteiro, Y. Chen, Z. Shao, S.R.P. Silva, J. Liu, Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 6(18), 8280–8288 (2018)CrossRef
9.
go back to reference L. Wen, J. Chen, J. Liang, L. Feng, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4(1), 20–23 (2016)CrossRef L. Wen, J. Chen, J. Liang, L. Feng, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4(1), 20–23 (2016)CrossRef
10.
go back to reference L. Wen, J. Liang, J. Chen, Z.-Y. Chu, H.-M. Cheng, F. Li, Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3(11), 1900323 (2019)CrossRef L. Wen, J. Liang, J. Chen, Z.-Y. Chu, H.-M. Cheng, F. Li, Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3(11), 1900323 (2019)CrossRef
11.
go back to reference A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016)CrossRef A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016)CrossRef
12.
go back to reference K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)CrossRef K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)CrossRef
13.
go back to reference P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51(12), 2901–2912 (2010)CrossRef P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51(12), 2901–2912 (2010)CrossRef
14.
go back to reference O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005)CrossRef O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005)CrossRef
15.
go back to reference A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys. Chem. Chem. Phys. 17(24), 15687–15690 (2015)CrossRef A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys. Chem. Chem. Phys. 17(24), 15687–15690 (2015)CrossRef
16.
go back to reference Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy storage in Oceania. Energy Storage Mater. 20, 176–187 (2019) Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy storage in Oceania. Energy Storage Mater. 20, 176–187 (2019)
17.
go back to reference X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)CrossRef X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)CrossRef
18.
go back to reference V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016)CrossRef V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016)CrossRef
19.
go back to reference Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018)CrossRef Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018)CrossRef
20.
go back to reference Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef
21.
go back to reference X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)CrossRef X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)CrossRef
22.
go back to reference W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang, S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019)CrossRef W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang, S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019)CrossRef
23.
go back to reference J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010)CrossRef J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010)CrossRef
24.
go back to reference J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013)CrossRef J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013)CrossRef
25.
go back to reference Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)CrossRef Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)CrossRef
26.
go back to reference H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)CrossRef H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)CrossRef
27.
go back to reference J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)CrossRef J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)CrossRef
28.
go back to reference K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)CrossRef K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)CrossRef
29.
go back to reference K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44(12), 2368–2375 (2006)CrossRef K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44(12), 2368–2375 (2006)CrossRef
30.
go back to reference T. Zhang, S. Han, W. Guo, F. Hou, J. Liu, X. Yan, S. Chen, J. Liang, Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. SM&T 20, e00096 (2019) T. Zhang, S. Han, W. Guo, F. Hou, J. Liu, X. Yan, S. Chen, J. Liang, Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. SM&T 20, e00096 (2019)
31.
go back to reference C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef
32.
go back to reference J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019)CrossRef J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019)CrossRef
33.
go back to reference C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, R.H. Hauge, N. Zhao, Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)CrossRef C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, R.H. Hauge, N. Zhao, Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)CrossRef
34.
go back to reference Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.-X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4), 3557–3567 (2018)CrossRef Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.-X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4), 3557–3567 (2018)CrossRef
35.
go back to reference T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42(23), 3541–3552 (1997)CrossRef T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42(23), 3541–3552 (1997)CrossRef
36.
go back to reference L. Cao, F. Xu, Y.-Y. Liang, H.-L. Li, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16(20), 1853–1857 (2004)CrossRef L. Cao, F. Xu, Y.-Y. Liang, H.-L. Li, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16(20), 1853–1857 (2004)CrossRef
37.
go back to reference Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 262, 344–348 (2014)CrossRef Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 262, 344–348 (2014)CrossRef
38.
go back to reference Z. Yang, C.-Y. Chen, H.-T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196(18), 7874–7877 (2011)CrossRef Z. Yang, C.-Y. Chen, H.-T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196(18), 7874–7877 (2011)CrossRef
39.
go back to reference J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)CrossRef J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)CrossRef
40.
go back to reference C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015)CrossRef C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015)CrossRef
41.
go back to reference X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8(5), 1559–1568 (2015)CrossRef X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8(5), 1559–1568 (2015)CrossRef
42.
go back to reference Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRef Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRef
43.
go back to reference X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144–168 (2020)CrossRef X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144–168 (2020)CrossRef
44.
go back to reference G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 4(9), 870–881 (2011)CrossRef G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 4(9), 870–881 (2011)CrossRef
45.
go back to reference M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148(8), A910–A914 (2001)CrossRef M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148(8), A910–A914 (2001)CrossRef
46.
go back to reference J. Lloyd-Hughes, T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012)CrossRef J. Lloyd-Hughes, T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012)CrossRef
47.
go back to reference B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–5101 (2008)CrossRef B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–5101 (2008)CrossRef
48.
go back to reference I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 73 (2010)CrossRef I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 73 (2010)CrossRef
49.
go back to reference Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)CrossRef Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)CrossRef
50.
go back to reference Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015)CrossRef Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015)CrossRef
51.
go back to reference S. Wu, G. Chen, N.Y. Kim, K. Ni, W. Zeng, Y. Zhao, Z. Tao, H. Ji, Z. Lee, Y. Zhu, Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 12(17), 2376–2384 (2016)CrossRef S. Wu, G. Chen, N.Y. Kim, K. Ni, W. Zeng, Y. Zhao, Z. Tao, H. Ji, Z. Lee, Y. Zhu, Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 12(17), 2376–2384 (2016)CrossRef
52.
go back to reference H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010)CrossRef H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010)CrossRef
53.
go back to reference Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012)CrossRef Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012)CrossRef
54.
go back to reference Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48(5), 575–580 (2003)CrossRef Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48(5), 575–580 (2003)CrossRef
55.
go back to reference J.H. Park, J.M. Ko, O. Ok Park, Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J. Electrochem. Soc. 150(7), A864–A867 (2003)CrossRef J.H. Park, J.M. Ko, O. Ok Park, Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J. Electrochem. Soc. 150(7), A864–A867 (2003)CrossRef
56.
go back to reference X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu, S.-X. Dou, An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 28(26), 1801016 (2018)CrossRef X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu, S.-X. Dou, An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 28(26), 1801016 (2018)CrossRef
57.
go back to reference U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015)CrossRef U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015)CrossRef
58.
go back to reference J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017)CrossRef J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017)CrossRef
59.
go back to reference X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6(17), 9889–9924 (2014)CrossRef X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6(17), 9889–9924 (2014)CrossRef
60.
go back to reference Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015)CrossRef Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015)CrossRef
61.
go back to reference C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016)CrossRef C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016)CrossRef
62.
go back to reference N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J. Energy Chem. 25(3), 463–471 (2016)CrossRef N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J. Energy Chem. 25(3), 463–471 (2016)CrossRef
63.
go back to reference P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1), 444–452 (2017)CrossRef P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1), 444–452 (2017)CrossRef
64.
go back to reference B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)CrossRef B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)CrossRef
65.
go back to reference Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2(28), 10917–10922 (2014)CrossRef Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2(28), 10917–10922 (2014)CrossRef
66.
go back to reference P. Pande, P.G. Rasmussen, L.T. Thompson, Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012)CrossRef P. Pande, P.G. Rasmussen, L.T. Thompson, Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012)CrossRef
67.
go back to reference M.S. Javed, S. Dai, M. Wang, Y. Xi, Q. Lang, D. Guo, C. Hu, Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32), 13610–13618 (2015)CrossRef M.S. Javed, S. Dai, M. Wang, Y. Xi, Q. Lang, D. Guo, C. Hu, Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32), 13610–13618 (2015)CrossRef
68.
go back to reference X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)CrossRef X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)CrossRef
69.
go back to reference A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)CrossRef A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)CrossRef
70.
go back to reference Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J. Mater. Chem. 22(11), 4938–4943 (2012)CrossRef Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J. Mater. Chem. 22(11), 4938–4943 (2012)CrossRef
71.
go back to reference A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47(1), 89–107 (1994)CrossRef A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47(1), 89–107 (1994)CrossRef
72.
go back to reference M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1), 1360–1361 (1999)CrossRef M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1), 1360–1361 (1999)CrossRef
73.
go back to reference Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1(4), 183–195 (2018)CrossRef Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1(4), 183–195 (2018)CrossRef
74.
go back to reference T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5(3), 1192–1200 (2017)CrossRef T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5(3), 1192–1200 (2017)CrossRef
75.
go back to reference B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef
76.
go back to reference F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)CrossRef F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)CrossRef
77.
go back to reference Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017)CrossRef Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017)CrossRef
78.
go back to reference Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef
79.
go back to reference P. Lu, X. Wang, L. Wen, X. Jiang, W. Guo, L. Wang, X. Yan, F. Hou, J. Liang, H.-M. Cheng, S.X. Dou, Silica-mediated formation of nickel sulfide nanosheets on CNT films for versatile energy storage. Small 15(15), 1805064 (2019)CrossRef P. Lu, X. Wang, L. Wen, X. Jiang, W. Guo, L. Wang, X. Yan, F. Hou, J. Liang, H.-M. Cheng, S.X. Dou, Silica-mediated formation of nickel sulfide nanosheets on CNT films for versatile energy storage. Small 15(15), 1805064 (2019)CrossRef
80.
go back to reference M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)CrossRef M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)CrossRef
81.
go back to reference A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)CrossRef A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)CrossRef
82.
go back to reference H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)CrossRef H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)CrossRef
83.
go back to reference L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)CrossRef L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)CrossRef
84.
go back to reference Y. Ai, Z. Lou, L. Li, S. Chen, H.S. Park, Z.M. Wang, G. Shen, Meters-long flexible CoNiO2-nanowires@ carbon-fibers based wire-supercapacitors for wearable electronics. Adv. Mater. Technol. 1(8), 1600142 (2016)CrossRef Y. Ai, Z. Lou, L. Li, S. Chen, H.S. Park, Z.M. Wang, G. Shen, Meters-long flexible CoNiO2-nanowires@ carbon-fibers based wire-supercapacitors for wearable electronics. Adv. Mater. Technol. 1(8), 1600142 (2016)CrossRef
85.
go back to reference B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. Small 9(11), 1998–2004 (2013)CrossRef B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. Small 9(11), 1998–2004 (2013)CrossRef
86.
go back to reference Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)CrossRef Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)CrossRef
87.
go back to reference S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013)CrossRef S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013)CrossRef
88.
go back to reference T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013)CrossRef T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013)CrossRef
89.
go back to reference Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)CrossRef Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)CrossRef
90.
go back to reference H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4(12), 7020–7026 (2012)CrossRef H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4(12), 7020–7026 (2012)CrossRef
91.
go back to reference Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013)CrossRef Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013)CrossRef
92.
go back to reference X. Hong, Y. Lu, S. Li, X. Wang, X. Wang, J. Liang, Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 294, 376–382 (2019)CrossRef X. Hong, Y. Lu, S. Li, X. Wang, X. Wang, J. Liang, Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 294, 376–382 (2019)CrossRef
93.
go back to reference Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1(2), 258–261 (2013)CrossRef Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1(2), 258–261 (2013)CrossRef
94.
go back to reference A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)CrossRef A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)CrossRef
95.
go back to reference P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W. Chou, Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014)CrossRef P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W. Chou, Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014)CrossRef
96.
go back to reference J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef
97.
go back to reference X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)CrossRef X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)CrossRef
98.
go back to reference Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)CrossRef Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)CrossRef
99.
go back to reference L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)CrossRef L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)CrossRef
100.
go back to reference X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013)CrossRef X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013)CrossRef
101.
go back to reference H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, G. Shen, Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8(11), 3544–3552 (2015)CrossRef H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, G. Shen, Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8(11), 3544–3552 (2015)CrossRef
102.
go back to reference M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef
103.
go back to reference Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, J.S. Ha, Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81, 29–37 (2015)CrossRef Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, J.S. Ha, Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81, 29–37 (2015)CrossRef
104.
go back to reference Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28(11), 2217–2222 (2016)CrossRef Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28(11), 2217–2222 (2016)CrossRef
105.
go back to reference J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016)CrossRef J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016)CrossRef
106.
go back to reference Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016)CrossRef Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016)CrossRef
107.
go back to reference M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef
108.
go back to reference X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5(17), 7831–7837 (2013)CrossRef X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5(17), 7831–7837 (2013)CrossRef
109.
go back to reference X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10), 9200–9206 (2012)CrossRef X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10), 9200–9206 (2012)CrossRef
110.
go back to reference Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017)CrossRef Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017)CrossRef
111.
go back to reference C. Yan, P.S. Lee, Stretchable energy storage and conversion devices. Small 10(17), 3443–3460 (2014)CrossRef C. Yan, P.S. Lee, Stretchable energy storage and conversion devices. Small 10(17), 3443–3460 (2014)CrossRef
112.
go back to reference X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z.L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)CrossRef X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z.L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)CrossRef
113.
go back to reference X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014)CrossRef X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014)CrossRef
114.
go back to reference D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28(4), 748–756 (2016)CrossRef D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28(4), 748–756 (2016)CrossRef
115.
go back to reference J. Xu, G. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 13, 131–139 (2015)CrossRef J. Xu, G. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 13, 131–139 (2015)CrossRef
116.
go back to reference J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 25(45), 6625–6632 (2013)CrossRef J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 25(45), 6625–6632 (2013)CrossRef
117.
go back to reference S.R. Shin, C.K. Lee, I. So, J.-H. Jeon, T.M. Kang, C. Kee, S.I. Kim, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008)CrossRef S.R. Shin, C.K. Lee, I. So, J.-H. Jeon, T.M. Kang, C. Kee, S.I. Kim, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008)CrossRef
118.
go back to reference Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448–6451 (2014)CrossRef Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448–6451 (2014)CrossRef
119.
go back to reference Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016)CrossRef Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016)CrossRef
120.
go back to reference X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)CrossRef X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)CrossRef
121.
go back to reference Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang, Y. Ma, C. Yang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016)CrossRef Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang, Y. Ma, C. Yang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016)CrossRef
122.
go back to reference Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012)CrossRef Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012)CrossRef
123.
go back to reference T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)CrossRef T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)CrossRef
124.
go back to reference H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016)CrossRef H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016)CrossRef
125.
go back to reference H. Huang, L. Lu, J. Wang, J. Yang, S.-F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci. 6(10), 2965–2971 (2013)CrossRef H. Huang, L. Lu, J. Wang, J. Yang, S.-F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci. 6(10), 2965–2971 (2013)CrossRef
126.
go back to reference S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014)CrossRef S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014)CrossRef
127.
go back to reference J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1(5), 1600074 (2016)CrossRef J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1(5), 1600074 (2016)CrossRef
128.
go back to reference H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9(7), 2262–2266 (2016)CrossRef H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9(7), 2262–2266 (2016)CrossRef
129.
go back to reference Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014)CrossRef Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014)CrossRef
130.
go back to reference M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016)CrossRef M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016)CrossRef
131.
go back to reference J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014)CrossRef J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014)CrossRef
132.
go back to reference Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6(3), 805–812 (2013)CrossRef Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6(3), 805–812 (2013)CrossRef
133.
go back to reference Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 1(3), 954–958 (2013)CrossRef Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 1(3), 954–958 (2013)CrossRef
134.
go back to reference Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)CrossRef Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)CrossRef
135.
go back to reference G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)CrossRef G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)CrossRef
136.
go back to reference G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef
137.
go back to reference Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)CrossRef Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)CrossRef
138.
go back to reference C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016)CrossRef C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016)CrossRef
139.
go back to reference Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z.L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014)CrossRef Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z.L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014)CrossRef
140.
go back to reference W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470 (2014)CrossRef W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470 (2014)CrossRef
141.
go back to reference Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef
142.
go back to reference Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)CrossRef Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)CrossRef
143.
go back to reference S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263–11271 (2013)CrossRef S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263–11271 (2013)CrossRef
144.
go back to reference J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)CrossRef J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)CrossRef
145.
go back to reference W. Tang, C.B. Han, C. Zhang, Z.L. Wang, Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9, 121–127 (2014)CrossRef W. Tang, C.B. Han, C. Zhang, Z.L. Wang, Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9, 121–127 (2014)CrossRef
146.
go back to reference X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef
Metadata
Title
Self-responsive Nanomaterials for Flexible Supercapacitors
Authors
Daolan Liu
Yueyu Tong
Lei Wen
Ji Liang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-39994-8_3