Skip to main content
Top
Published in: Journal of Materials Science 11/2018

07-03-2018 | Biomaterials

Self-sensing and mechanical performance of CNT/GNP/UHMWPE biocompatible nanocomposites

Authors: Tejendra K. Gupta, M. Choosri, K. M. Varadarajan, S. Kumar

Published in: Journal of Materials Science | Issue 11/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultra-high molecular weight polyethylene (UHMWPE)-based conductive nanocomposites with reduced percolation and tunable piezoresistive behavior were prepared via solution mixing followed by compression molding using carbon nanotubes (CNT) and graphene nanoplatelets (GNP). The effect of varying wt% of GNP with fixed CNT content (0.1 wt%) on the mechanical, electrical, thermal and piezoresistive properties of UHMWPE nanocomposites was evaluated. The combination of CNT and GNP enhanced the dispersion in UHMWPE matrix and lowered the probability of CNT aggregation as GNP acted as a spacer to separate the entanglement of CNT with each other. This has allowed the formation of an effective conductive path between GNP and CNT in UHMWPE matrix. The thermal conductivity, degree of crystallinity and degradation temperature of the nanocomposites increased with increasing GNP content. The elastic modulus and yield strength of the nanocomposites were improved by 37% and 33%, respectively, for 0.1/0.3 wt% of CNT/GNP compared to neat UHMWPE. The electrical conductivity was measured using four-probe method, and the lowest electrical percolation threshold was achieved at 0.1/0.1 wt% of CNT/GNP forming a nearly two-dimensional conductive network (critical value, t = 1.20). Such improvements in mechanical and electrical properties are attributed to the synergistic effect of the two-dimensional GNP and one-dimensional CNT which limits aggregation of CNTs enabling a more efficient conductive network at low wt% of fillers. These hybrid nanocomposites exhibited strong piezoresistive response with sensitivity factor of 6.2, 15.93 and 557.44 in the linear elastic, inelastic I and inelastic II regimes, respectively, for 0.1/0.5 wt% of CNT/GNP. This study demonstrates the fabrication method and the self-sensing performance of CNT/GNP/UHMWPE nanocomposites with improved properties useful for orthopedic implants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Chung DDL (2007) Damage detection using self-sensing concepts. Proc Inst Mech Eng Part G: J Aerosp Eng 221(4):509–520CrossRef Chung DDL (2007) Damage detection using self-sensing concepts. Proc Inst Mech Eng Part G: J Aerosp Eng 221(4):509–520CrossRef
4.
go back to reference Chung D (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef Chung D (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef
6.
7.
go back to reference Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261):523–526CrossRef Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272(5261):523–526CrossRef
8.
go back to reference Treacy MJ, Ebbesen T, Gibson J (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680CrossRef Treacy MJ, Ebbesen T, Gibson J (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680CrossRef
10.
go back to reference Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616CrossRef Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616CrossRef
19.
go back to reference Gupta TK, Kumar S (2018) Fabrication of carbon nanotube/polymer nanocomposites. Carbon nanotube-reinforced polymers: from nanoscale to macroscale. Elsevier, Amsterdam, pp 61–81CrossRef Gupta TK, Kumar S (2018) Fabrication of carbon nanotube/polymer nanocomposites. Carbon nanotube-reinforced polymers: from nanoscale to macroscale. Elsevier, Amsterdam, pp 61–81CrossRef
28.
go back to reference Pal G, Kumar S (2018) Mechanical properties of isolated carbon nanotube. Carbon nanotube-reinforced polymers: from nanoscale to macroscale. Elsevier, Amsterdam, pp 173–199CrossRef Pal G, Kumar S (2018) Mechanical properties of isolated carbon nanotube. Carbon nanotube-reinforced polymers: from nanoscale to macroscale. Elsevier, Amsterdam, pp 173–199CrossRef
29.
go back to reference Kim K, Regan W, Geng B, Alemn B, Kessler BM, Wang F, Crommie MF, Zettl A (2010) High-temperature stability of suspended single-layer graphene. Phys Status Solidi (RRL) Rapid Res Lett 4(11):302–304CrossRef Kim K, Regan W, Geng B, Alemn B, Kessler BM, Wang F, Crommie MF, Zettl A (2010) High-temperature stability of suspended single-layer graphene. Phys Status Solidi (RRL) Rapid Res Lett 4(11):302–304CrossRef
31.
go back to reference Briscoe BJ, Pelillo E, Sinha SK (1996) Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym Eng Sci 36(24):2996–3005CrossRef Briscoe BJ, Pelillo E, Sinha SK (1996) Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym Eng Sci 36(24):2996–3005CrossRef
36.
go back to reference Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5(1):117–136CrossRef Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5(1):117–136CrossRef
37.
go back to reference Lahiri D, Dua R, Zhang C, de Socarraz-Novoa I, Bhat A, Ramaswamy S, Agarwal A (2012) Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro. ACS Appl Mater Interfaces 4(4):2234–2241. https://doi.org/10.1021/am300244s CrossRef Lahiri D, Dua R, Zhang C, de Socarraz-Novoa I, Bhat A, Ramaswamy S, Agarwal A (2012) Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro. ACS Appl Mater Interfaces 4(4):2234–2241. https://​doi.​org/​10.​1021/​am300244s CrossRef
40.
go back to reference Oskouyi ABSU, Mertiny P (2014) Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Mater Chem Phys 7(4):2501–2521 Oskouyi ABSU, Mertiny P (2014) Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Mater Chem Phys 7(4):2501–2521
43.
go back to reference Bauhofer WKJ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef Bauhofer WKJ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRef
Metadata
Title
Self-sensing and mechanical performance of CNT/GNP/UHMWPE biocompatible nanocomposites
Authors
Tejendra K. Gupta
M. Choosri
K. M. Varadarajan
S. Kumar
Publication date
07-03-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2072-3

Other articles of this Issue 11/2018

Journal of Materials Science 11/2018 Go to the issue

Premium Partners