Skip to main content
Top
Published in: Neural Processing Letters 6/2021

02-08-2021

Self-Supervised Convolutional Subspace Clustering Network with the Block Diagonal Regularizer

Authors: Maoshan Liu, Yan Wang, Zhicheng Ji

Published in: Neural Processing Letters | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The practical visual data do not necessarily lie in linear subspaces, so deep convolutional subspace clustering network is proposed to segment the practical visual data into multiple categories accurately. The original convolutional subspace clustering network contains the stacked convolutional encoder module, the stacked convolutional decoder module and the self-expression module. We firstly alter the self-expression module, i.e., add a new k-block diagonal regularizer to the weights of the self-expression module. It means that the \(\ell _1\) or \(\ell _2\) regularizer is abandoned. The k-block diagonal regularizer is proposed to directly pursue the block diagonal matrix, so introducing this regularizer to the self-expression module will make the learned representation matrix conform with the block diagonal matrix better. Secondly, we add a new spectral clustering module to this convolutional subspace clustering network, in which the spectral clustering result is used to supervise the learning of the representation matrix. This subspace structured regularizer is introduced to the spectral clustering module, which further refines the learned representation matrix. Experimental results on three challenging datasets have demonstrated that the proposed deep learning based subspace clustering method achieves the better clustering effect over the state-of-the-arts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Elhamifar E, Vidal R (2009) Sparse subspace clustering. In CVPR. pp 2790–2797 Elhamifar E, Vidal R (2009) Sparse subspace clustering. In CVPR. pp 2790–2797
2.
go back to reference Hastie T, Simard PY (2000) Metrics and models for handwritten character recognition. Stat Sci 13(1) Hastie T, Simard PY (2000) Metrics and models for handwritten character recognition. Stat Sci 13(1)
3.
go back to reference Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRef Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRef
4.
go back to reference Qian C, Brechon TP, Xu ZZ (2018) Clustering in pursuit of temporal correlation for human motion segmentation. Multimed Tools Appl 77(15):19615–19631CrossRef Qian C, Brechon TP, Xu ZZ (2018) Clustering in pursuit of temporal correlation for human motion segmentation. Multimed Tools Appl 77(15):19615–19631CrossRef
5.
go back to reference Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Recognit Mach Intell 25(2):218–233CrossRef Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Recognit Mach Intell 25(2):218–233CrossRef
6.
go back to reference Elhamifar E, Vidal R (2010) Clustering disjoint subspaces via sparse representation. In: IEEE international conference on acoustics, speech, and signal processing. pp 1926–1929 Elhamifar E, Vidal R (2010) Clustering disjoint subspaces via sparse representation. In: IEEE international conference on acoustics, speech, and signal processing. pp 1926–1929
7.
go back to reference You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: IEEE conference on computer vision and pattern recognition. pp 3918–3927 You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: IEEE conference on computer vision and pattern recognition. pp 3918–3927
8.
go back to reference Dyer EL, Studer C, Baraniuk RG (2013) Subspace clustering with dense representations. In: International conference on acoustics, speech and signal processing Dyer EL, Studer C, Baraniuk RG (2013) Subspace clustering with dense representations. In: International conference on acoustics, speech and signal processing
9.
go back to reference Ji P, Salzmann M, Li H (2014) Efficient dense subspace clustering. In: IEEE winter conference on applications of computer vision. IEEE, pp 461–468 Ji P, Salzmann M, Li H (2014) Efficient dense subspace clustering. In: IEEE winter conference on applications of computer vision. IEEE, pp 461–468
10.
go back to reference Favar P, Vidal R, Ravichandran A (2011) A closed form solution to robust subspace estimation and clustering. In: IEEE conference on computer vision and pattern recognition. pp 1801–1807 Favar P, Vidal R, Ravichandran A (2011) A closed form solution to robust subspace estimation and clustering. In: IEEE conference on computer vision and pattern recognition. pp 1801–1807
11.
go back to reference Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recognit Lett 43:47–61CrossRef Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recognit Lett 43:47–61CrossRef
12.
go back to reference Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. European conference on computer vision. Springer, Berlin, Heidelberg, pp 347–360 Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. European conference on computer vision. Springer, Berlin, Heidelberg, pp 347–360
13.
go back to reference Cheng B, Yang J, Yan S, Huang TS (2010) Learning with \(\ell _1\)-graph for image analysis. TIP, 19(Compendex). pp 858–866 Cheng B, Yang J, Yan S, Huang TS (2010) Learning with \(\ell _1\)-graph for image analysis. TIP, 19(Compendex). pp 858–866
14.
go back to reference Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning. pp 663-670 Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning. pp 663-670
15.
go back to reference Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRef Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184CrossRef
16.
go back to reference Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: Proceedings of the IEEE international conference on computer vision. pp 1345–1352 Lu C, Feng J, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: Proceedings of the IEEE international conference on computer vision. pp 1345–1352
17.
go back to reference Xu J, Xu K, Chen K, Ruan JS (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37CrossRef Xu J, Xu K, Chen K, Ruan JS (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37CrossRef
18.
go back to reference Dong W, Wu XJ, Kittler J (2019) Sparse subspace clustering via smoothed \(\ell _p\) minimization. Pattern Recognit Lett 125:206–211CrossRef Dong W, Wu XJ, Kittler J (2019) Sparse subspace clustering via smoothed \(\ell _p\) minimization. Pattern Recognit Lett 125:206–211CrossRef
19.
go back to reference Dong W, Wu XJ (2018) Robust affine subspace clustering via smoothed \(\ell _0\)-norm. Neural Process Lett 50(1):785–797CrossRef Dong W, Wu XJ (2018) Robust affine subspace clustering via smoothed \(\ell _0\)-norm. Neural Process Lett 50(1):785–797CrossRef
20.
go back to reference Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856 Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856
21.
go back to reference Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Recognit Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Recognit Mach Intell 22(8):888–905CrossRef
22.
go back to reference Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001MathSciNetCrossRef Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001MathSciNetCrossRef
23.
go back to reference Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 277–286 Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 277–286
24.
go back to reference Li CG, Vidal R (2016) A structured sparse plus structured low-rank framework for subspace clustering and completion. IEEE Trans Signal Process 64(24):6557–6570MathSciNetCrossRef Li CG, Vidal R (2016) A structured sparse plus structured low-rank framework for subspace clustering and completion. IEEE Trans Signal Process 64(24):6557–6570MathSciNetCrossRef
25.
go back to reference Chen H, Wang W, Feng X (2018) Structured sparse subspace clustering with within-cluster grouping. Pattern Recognit 83:107–118CrossRef Chen H, Wang W, Feng X (2018) Structured sparse subspace clustering with within-cluster grouping. Pattern Recognit 83:107–118CrossRef
26.
go back to reference Chen H, Wang W, Feng X, He R (2018) Discriminative and coherent subspace clustering. Neurocomputing 284:177–186CrossRef Chen H, Wang W, Feng X, He R (2018) Discriminative and coherent subspace clustering. Neurocomputing 284:177–186CrossRef
27.
go back to reference Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501CrossRef Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41(2):487–501CrossRef
28.
go back to reference Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw Learn Syst 29(7):3111–3125MathSciNetCrossRef Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw Learn Syst 29(7):3111–3125MathSciNetCrossRef
29.
go back to reference Xie X, Guo X, Liu G, Wang J (2018) Implicit block diagonal low-rank representation. IEEE Trans Image Process 27(1):477–489MathSciNetCrossRef Xie X, Guo X, Liu G, Wang J (2018) Implicit block diagonal low-rank representation. IEEE Trans Image Process 27(1):477–489MathSciNetCrossRef
30.
go back to reference Patel VM, Vidal R (2014) Kernel sparse subspace clustering. In: IEEE international conference on image processing. pp 2849–2853 Patel VM, Vidal R (2014) Kernel sparse subspace clustering. In: IEEE international conference on image processing. pp 2849–2853
31.
go back to reference Patel VM, Nguyen HV, Vidal R (2015) Latent space sparse and low-rank subspace clustering. IEEE J Sel Topics in Signal Process 9(4):691–701CrossRef Patel VM, Nguyen HV, Vidal R (2015) Latent space sparse and low-rank subspace clustering. IEEE J Sel Topics in Signal Process 9(4):691–701CrossRef
32.
go back to reference Patel VM, Nguyen HV, Vidal R (2013) Latent space sparse subspace clustering Patel VM, Nguyen HV, Vidal R (2013) Latent space sparse subspace clustering
33.
go back to reference Kang Z, Peng C, Cheng Q et al (2020) Structured graph learning for clustering and semi-supervised classification. Pattern Recognit 110:107627CrossRef Kang Z, Peng C, Cheng Q et al (2020) Structured graph learning for clustering and semi-supervised classification. Pattern Recognit 110:107627CrossRef
35.
go back to reference Xiao S, Tan M, Xu D et al (2016) Robust kernel low-rank representation. IEEE Trans Neural Netw Learn Syst 27(11):2268–2281MathSciNetCrossRef Xiao S, Tan M, Xu D et al (2016) Robust kernel low-rank representation. IEEE Trans Neural Netw Learn Syst 27(11):2268–2281MathSciNetCrossRef
36.
go back to reference Saba T, Khan MA, Rehman A et al (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43(9):1–19CrossRef Saba T, Khan MA, Rehman A et al (2019) Region extraction and classification of skin cancer: a heterogeneous framework of deep CNN features fusion and reduction. J Med Syst 43(9):1–19CrossRef
37.
go back to reference Hassan MM, Alam MGR, Uddin MZ et al (2019) Human emotion recognition using deep belief network architecture. Inf Fusion 51:10–18CrossRef Hassan MM, Alam MGR, Uddin MZ et al (2019) Human emotion recognition using deep belief network architecture. Inf Fusion 51:10–18CrossRef
38.
go back to reference Peng X, Xiao S, Feng J, Yau WY, Yi Z (2016) Deep subspace clustering with sparsity prior. In: International Joint conference on artificial intelligence. pp. 1925–1931 Peng X, Xiao S, Feng J, Yau WY, Yi Z (2016) Deep subspace clustering with sparsity prior. In: International Joint conference on artificial intelligence. pp. 1925–1931
41.
go back to reference Kang Z, Lu X, Liang J et al (2020) Relation-guided representation learning. Neural Netw 131:93–102CrossRef Kang Z, Lu X, Liang J et al (2020) Relation-guided representation learning. Neural Netw 131:93–102CrossRef
42.
go back to reference Kang Z, Pan H, Hoi SC et al (2019) Robust graph learning from noisy data. IEEE Trans Cybern 50(5):1833–1843CrossRef Kang Z, Pan H, Hoi SC et al (2019) Robust graph learning from noisy data. IEEE Trans Cybern 50(5):1833–1843CrossRef
43.
go back to reference Zhang J, Li CG, You C, et al (2019) Self-supervised convolutional subspace clustering network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 5473–5482 Zhang J, Li CG, You C, et al (2019) Self-supervised convolutional subspace clustering network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 5473–5482
44.
go back to reference Huang D, Wang CD, Lai JH (2017) Locally weighted ensemble clustering. IEEE Trans Cybern 48(5):1460–1473CrossRef Huang D, Wang CD, Lai JH (2017) Locally weighted ensemble clustering. IEEE Trans Cybern 48(5):1460–1473CrossRef
45.
go back to reference Huang D, Wang CD, Peng H, et al (2018) Enhanced ensemble clustering via fast propagation of cluster-wise similarities. IEEE Trans Syst Man Cybern Syst Huang D, Wang CD, Peng H, et al (2018) Enhanced ensemble clustering via fast propagation of cluster-wise similarities. IEEE Trans Syst Man Cybern Syst
46.
go back to reference Huang D, Wang CD, Wu JS et al (2019) Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans Knowl Data Eng 32(6):1212–1226CrossRef Huang D, Wang CD, Wu JS et al (2019) Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans Knowl Data Eng 32(6):1212–1226CrossRef
Metadata
Title
Self-Supervised Convolutional Subspace Clustering Network with the Block Diagonal Regularizer
Authors
Maoshan Liu
Yan Wang
Zhicheng Ji
Publication date
02-08-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 6/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10563-1

Other articles of this Issue 6/2021

Neural Processing Letters 6/2021 Go to the issue