Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-06-2021 | Special Issue Paper

Self-supervised deep metric learning for ancient papyrus fragments retrieval

Journal:
International Journal on Document Analysis and Recognition (IJDAR)
Authors:
Antoine Pirrone, Marie Beurton-Aimar, Nicholas Journet
Important notes
The research leading to this results has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under Grant agreement No. 758907 and is part of the GESHAEM Project, hosted by the Ausonius Institute. The source code (upon request) and data used in this article are available at https://​morphoboid.​labri.​fr/​self-supervised-papyrus.​html.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This work focuses on document fragments association using deep metric learning methods. More precisely, we are interested in ancient papyri fragments that need to be reconstructed prior to their analysis by papyrologists. This is a challenging task to automatize using machine learning algorithms because labeled data is rare, often incomplete, imbalanced and of inconsistent conservation states. However, there is a real need for such software in the papyrology community as the process of reconstructing the papyri by hand is extremely time-consuming and tedious. In this paper, we explore ways in which papyrologists can obtain useful matching suggestion on new data using Deep Convolutional Siamese-Networks. We emphasize on low-to-no human intervention for annotating images. We show that the from-scratch self-supervised approach we propose is more effective than using knowledge transfer from a large dataset, the former achieving a top-1 accuracy score of 0.73 on a retrieval task involving 800 fragments.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partner

    Image Credits