Skip to main content
Top

2021 | OriginalPaper | Chapter

Self-supervised Domain Adaptation for Diabetic Retinopathy Grading Using Vessel Image Reconstruction

Authors : Duy M. H. Nguyen, Truong T. N. Mai, Ngoc T. T. Than, Alexander Prange, Daniel Sonntag

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter discusses the challenge of diabetic retinopathy (DR) grading due to the complexity and variability of retinal images. It introduces a self-supervised domain adaptation method that uses vessel image reconstruction tasks to learn invariant feature representations. This approach addresses the domain shift problem in medical images, enabling more accurate and robust DR grading systems. The method is benchmarked against state-of-the-art unsupervised domain adaptation techniques and shows promising results. The chapter also highlights the potential for future research in incorporating additional lesion appearances and multimodal embeddings to further improve performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)CrossRef Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)CrossRef
2.
go back to reference Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and competition. Training 100(101), 102 (2017) Coleman, C., et al.: DAWNBench: an end-to-end deep learning benchmark and competition. Training 100(101), 102 (2017)
3.
go back to reference Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015) Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)
4.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH
5.
go back to reference Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)MathSciNetMATH Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)MathSciNetMATH
6.
go back to reference Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRef Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRef
7.
go back to reference Haneda, S., Yamashita, H.: International clinical diabetic retinopathy disease severity scale. Nihon Rinsho. Jpn. J. Clin. Med. 68, 228–235 (2010) Haneda, S., Yamashita, H.: International clinical diabetic retinopathy disease severity scale. Nihon Rinsho. Jpn. J. Clin. Med. 68, 228–235 (2010)
8.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
9.
go back to reference Holzinger, A., Malle, B., Saranti, A., Pfeifer, B.: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI. Inf. Fusion 71, 28–37 (2021)CrossRef Holzinger, A., Malle, B., Saranti, A., Pfeifer, B.: Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI. Inf. Fusion 71, 28–37 (2021)CrossRef
10.
go back to reference Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017) Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
11.
go back to reference Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., Qian, W.: An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2045–2048. IEEE (2019) Jiang, H., Yang, K., Gao, M., Zhang, D., Ma, H., Qian, W.: An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2045–2048. IEEE (2019)
13.
go back to reference Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1920–1929 (2019) Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1920–1929 (2019)
14.
go back to reference Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_9CrossRef Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74–82. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00934-2_​9CrossRef
15.
go back to reference Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 1640–1650 (2018) Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems, pp. 1640–1650 (2018)
16.
go back to reference Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)CrossRef Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)CrossRef
17.
go back to reference Nguyen, D.M., Nguyen, D.M., Vu, H., Nguyen, B.T., Nunnari, F., Sonntag, D.: An attention mechanism using multiple knowledge sources for COVID-19 detection from CT images. In: The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-2021), Workshop: Trustworthy AI for Healthcare (2021) Nguyen, D.M., Nguyen, D.M., Vu, H., Nguyen, B.T., Nunnari, F., Sonntag, D.: An attention mechanism using multiple knowledge sources for COVID-19 detection from CT images. In: The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-2021), Workshop: Trustworthy AI for Healthcare (2021)
18.
19.
20.
go back to reference Nunnari, F., Sonntag, D.: A software toolbox for deploying deep learning decision support systems with XAI capabilities. In: Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 44–49 (2021) Nunnari, F., Sonntag, D.: A software toolbox for deploying deep learning decision support systems with XAI capabilities. In: Companion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 44–49 (2021)
21.
go back to reference Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2536–2544 (2016) Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2536–2544 (2016)
22.
go back to reference Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015) Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:​1511.​06434 (2015)
23.
go back to reference Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation learning for domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
24.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
25.
go back to reference Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017) Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)
26.
go back to reference Sonntag, D., Nunnari, F., Profitlich, H.J.: The skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. Technical report. arXiv preprint arXiv:2005.09448 (2020) Sonntag, D., Nunnari, F., Profitlich, H.J.: The skincare project, an interactive deep learning system for differential diagnosis of malignant skin lesions. Technical report. arXiv preprint arXiv:​2005.​09448 (2020)
27.
go back to reference Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016) Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
29.
go back to reference Sun, X., Cao, X., Yang, Y., Wang, L., Xu, Y.: Robust retinal vessel segmentation from a data augmentation perspective. arXiv preprint arXiv:2007.15883 (2020) Sun, X., Cao, X., Yang, Y., Wang, L., Xu, Y.: Robust retinal vessel segmentation from a data augmentation perspective. arXiv preprint arXiv:​2007.​15883 (2020)
30.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
31.
go back to reference Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017) Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)
32.
go back to reference Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014) Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:​1412.​3474 (2014)
33.
go back to reference Wang, J., Chen, Y., Li, W., Kong, W., He, Y., Jiang, C., Shi, G.: Domain adaptation model for retinopathy detection from cross-domain OCT images. In: Medical Imaging with Deep Learning, pp. 795–810. PMLR (2020) Wang, J., Chen, Y., Li, W., Kong, W., He, Y., Jiang, C., Shi, G.: Domain adaptation model for retinopathy detection from cross-domain OCT images. In: Medical Imaging with Deep Learning, pp. 795–810. PMLR (2020)
34.
go back to reference Wang, Y., Chen, Y.C., Zhang, X., Sun, J., Jia, J.: Attentive normalization for conditional image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5094–5103 (2020) Wang, Y., Chen, Y.C., Zhang, X., Sun, J., Jia, J.: Attentive normalization for conditional image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5094–5103 (2020)
35.
go back to reference Wu, Y.H., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans. Image Process. 30, 3113–3126 (2021)CrossRef Wu, Y.H., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Trans. Image Process. 30, 3113–3126 (2021)CrossRef
36.
go back to reference Xiao, L., et al.: Self-supervised domain adaptation with consistency training. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6874–6880. IEEE (2021) Xiao, L., et al.: Self-supervised domain adaptation with consistency training. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6874–6880. IEEE (2021)
37.
go back to reference Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6256–6268. Curran Associates, Inc. (2020) Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for consistency training. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6256–6268. Curran Associates, Inc. (2020)
38.
go back to reference Xu, J., Xiao, L., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)CrossRef Xu, J., Xiao, L., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)CrossRef
39.
40.
go back to reference Yun, W.L., Acharya, U.R., Venkatesh, Y.V., Chee, C., Min, L.C., Ng, E.Y.K.: Identification of different stages of diabetic retinopathy using retinal optical images. Inf. Sci. 178(1), 106–121 (2008)CrossRef Yun, W.L., Acharya, U.R., Venkatesh, Y.V., Chee, C., Min, L.C., Ng, E.Y.K.: Identification of different stages of diabetic retinopathy using retinal optical images. Inf. Sci. 178(1), 106–121 (2008)CrossRef
41.
go back to reference Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019) Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)
42.
go back to reference Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40, 818–828 (2020)CrossRef Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40, 818–828 (2020)CrossRef
Metadata
Title
Self-supervised Domain Adaptation for Diabetic Retinopathy Grading Using Vessel Image Reconstruction
Authors
Duy M. H. Nguyen
Truong T. N. Mai
Ngoc T. T. Than
Alexander Prange
Daniel Sonntag
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_26

Premium Partner